
FORTRAN-80 LJser' s Manual

Copyr ight (C) I977 by tticrosofr

!licrosoft FORTRAN-80 User's l"lanual

FOREWORD

Page 2

This manual clescribes the use of the FORTRAN-80 compiler and
associateci scf tltare under the CP/M, DTC Microf i1e, Altair
DOS or ISIS-II Disk operating system. Refer to the
FORTRAN-E0 manual for an extensive description of FORTRAN

syntax and semantics.

I'licrosoft FORTRAN-a0 User' s Manual

TabIe of Contents

Sec t ion

1 Compiling FORTRAN Programs

1.I The FORTRAN-80 and MACRO-80 Command Scanner

1. l. I Format of CommanCs
, L.I.2 FORTR.AN-a0 Compilation Switches

I.2 Sample Compilation

1.3 FORTRAN-80 Compiler Error Messages

2 Linking FORTRAN programs

2.I The LINK-80 Command Scanner

2.L.1 Format of Commands
2.I.2 LINK-80 Switches

2.2 Sample Link

2.3 Format of LINK-8O Compatible Object Files
2.4 LINK-80 Error Messages

3 The MACRO-8O Assembler

3.1 Format of MACRO-8O Commands

3.1.1 MACRO-80 Command Strings
3.1. 2 MACRO-80 Switches

3.2 Format of the MACRO-8O Source File
3.3 Assembler Features

3.3. I Names
3.3.2 Constants
3.3. 3 Labels
3.3.4 Operators
3. 3. 5 Address Expressions
3.3.6 Remarks
3.3.7 Statement Form

3.4 pseudo Operations
a. 3.4.1 Def ine Byte

3.4.2 Define Character
3.4.3 Define Space
3.4.4 Define word
3.4.5 program Termination

Page 3

I',licrosoft FORTRAN-80 User's Manual

3.4.5 Terminated Conditional Assembly
3.4.7 Define Entry Points
3.4. I Define Equivalence
3.4.9 Define External
3.4.L0 False Conditional Assemblv
3.4.11 True Conditional Assembly
3.4.12 Define Origin
3.4.13 Page Break
3.4.14 Set
3.4.f5 Title

3.5 Notes "

3.6 Sample Assembly

3.7 MACRO-EA Errors

4 FORTRAN Runtime Error Messages

5 Operating Systems

5.1 CPM

5.2 DTC Microfile

5.3 ALTAIR DOS

5.4 ISIS-II

Page 4

1.1

1.1.1

Itlicrosoft FORTRAN-80 User's Manual Page 5

SECTION 1

Compiling FORTRAN Programs

The FORTRAN-80 anci MACRO-80 Command Scanner

Format of Commands

FORTRAN-80 and MACRO-86 general commands are as
fol lows :

obj prog-dev : f i1 ename . ext, I i st-dev : f iI ename . ex t=
source-dev : f ilename . ext

objprog-dev:
The device on which the
wr itten.
list-dev:
The device on which the

source-dev:

obj ect program is to be

program Iisting is written.

The device from which the source-program input toFORTRAN-80 or MAcRo-gg is obtained. rf a-devicename is omitted, it defaults to the currentlyselected drive.
filename. ext
The filename and filename extension of the objectprogram file, the listing filer and the

"olr""fi1e. Filename extensions may be omitted. seeSection 5 for the default 6xtension supplied byyour operating system.

Either the object file or the risting fire or bothmay be omitted. rf neither a risting file nor anobject file is desired, place only a "6*rnu to theleft of the egual sign. rf the tu^"s of the objectfile and the listing file are omitted, the defaultis the name of the iource file
Examples:

A>F8O

*=TEST

*,TTY: =TEST

Compile the program TEST.FOR
and place the object in TEST.REL

Compile the program TEST. FOR
and Iist program on the terminal.
No object is generated.

*TESTOBJ=TEST.FOR Compile the program TEST.FOR

t"licrosof t FORTRAN-80 User's Manual Page 6

and put object in TESTOBJ.REL

*TEST,TEST=TEST Compile TEST.FOR, Put object in
TEST.REL and listing in TEST,LST

*,=TEST.FOR Compile TEST.FOR but proCuce
no object or Iisting fiIe. Useful
for checkinq for errors.

1. 1. 2 qqBlRAN-9.9. Compilation Switches

A number of different switches may be given in the
command string that rvill affect the format of the
Iisting file. Each switch should be preceded by a
slash (/) z

Swi tch Action

o Print all listing addresses, etc. in
octal. (Default for ALTAIR DOS)
Print al1 listing addresses, etc. in
hexadec imal .
(Default for non-ALTAIR versions)
Do not list generated code.
Force generation of an object file.
Force generation of a listing file.
Each /P allocates an extra lgq bytes
of stack space for use during
compilation. Use /P if stack over-
flow errors occur during comPila-
tion. Otherwise not needed.

N
R
L
P

Exampl es:

*,TTY: =MYPROG,/N Compile f ile MYPROG. FOR and list
program on terminal but without
generated code.

*=TEST,/L Compil e TEST. FOR
with object file TEST.REL and
listing file TEST.LST

*=BIGGONE/P/P COMPiIE filC BIGGONE.FOR
and produce object file BIGGONE.REL.
Compiler is allocated 2AA extra byteo
of stack space.

A>F8O

*EXAl4PL, TTY: =EXAMPL

FORTIIAN-80 Ver . 2.3 Copyr ight Lgii (C)gOTOg PROGRAM EXAMPLEAO2TA TNTEGER X
9930fr I =2**8 +2*r,g +2**Iggg40g DO 1 J=1,5****rc 90A0, LXI Hr6iA0* *** * 9a03, SHLD rOA5gg C CIRCULAR SHIFT I LEFT 30069A SALL CSL3 (I,x)***** aaa6, LXr H,aaal****r(00A9, SHLD J0079a sRrTE (3,L0) r,x***** 000c, LXr D,X***** TgaFt LXr Hrr***** a0I2, CALL csl,3***** 0015, LXr o,tgt***** frglg' LXr H, I g3***** g01B' CALL $wzAAAL0 I I=X***** TAIE' LXI B, X***** g02L' LXr o, r***** 9024, LXI ff,t gL***** 9A27, MVI i',gg* *** * 9029 | CALL Si g***** Ag2C, CALL $ttofrggaa I0 ToRMAT (2r15)***** gazF, LHLD x***** ga32t SHLD I***** 0935, LHLD J***** a039, rNX H***** 0fr39, MVr A,05***** 003ts | suB L***** a03c, MVr A,OA* *** * 9038, sBB H***** 0g3Ft JP 0009,alggo eNo***** 0A42, CALL $ex***** 9a45, algT***** go47' a3ag

Program Unir L:lq Ltt=0A49 (73) BytesData Area Length;O00D (t3i Bytes
Subroutines Referenced :

Microsoft FORTRAN-80 User's Manual

r.2 Compil a t ion

-

Page 7

tsy Microsoft Bytes: 4524

BITS RESULT IN X

001

0sl

sr0
SND

csL3
$ex

sw2

tvlicrosoft FORTRAN-89 User's Manual Page 8

Var iables:

x 6ggl"

LABELS:

r gag3" J 9905"

lL 0g2F ' 10L ggTi"

*^c
A>

See section 3.6 for' a listing of the MACRO-8O subroutine
csL3.

Microsoft FORTTIAN-80 User's Manual Page 9

r.3 FORTRAN ComPiler Error !,tessaqes

The FORTRAN-8O Compiler detects trvo kinds of
errors: Warnings and Fatal Errors. When a lriarning
is issued, compilation continues with the next ir_emon the source line. lrlhen a Fatal Error is found,
the cornprler ignores the rest of the logical 1ine,
incl ud inq any continuation I ines. lr'ar ning messagesare preceded by percent signs (t), and Fatal Errorsby question marks (?). The eortor line number , lfanYr 9r the physical line number is printeo next.rt is forlowed by the error code or eiror messase.

Example:

?Line 252 Mismatched parentheses

tLine 15: Missing fnteger Variable
When either type of error occurs, theshould be changed so that it compileserrors. No guarantee is made that i progcompiles with errors will execute sensiblv.
Fatal Errors:

Error Message
Number

prog ram
wi tho ut

ram that

L00
101
rs2
Ig3
Is4
IA5
I06
I07
IA8
I09
tr0
111
IT2
113
114
115
115
117
118
119
I2s
l2t
r22
L23
124

Illegal Statement Number
Statement Unrecognizable or MisspelledIIlegal Statement CompletionIllegal DO Nestinq
Illegal Data Consiant
l,lissing Name
I llegal procedure lJameInvalid DATA Constant or Repeat Factorfncorrect Number of DATA ConstantsIncorrect Integer ConstantInvalid Statement NumberNot a Var iable Name
Illegal Logical Form OperatorData Pool Overflow
Literal String Too LargeInvalid Data List element in I/OUnbalanced DO Nest
Identifier Too LongIIlegal Operator
Mismatched parenthesis
Consecutive Operators
Improper Subscript Syntax
iJl.guJ rnreser euaniityIllegal Hollerith Constiuction
Backwards DO reference

t'licrosof t !'ORTRAN-80 User's t'lanual Page Lg

IllegaI Statement Function Name
Illegal Character for SYntax
Statement Out of Sequence
Missing Integer QuantitY
Invalid Logical OPerator
Illegal Item Following INTEGER or REAL
LCGICAL
Premature End Of File on Input Device
IIlegal Mixed Mode OPeration
Function CaI1 with No.Parameters
Stack Overflow
IIIegal. Statement Following Logical IF

g

I
2
3
4
5
6
7
I
9
Lg
11
t2
I3
14
15
16
17
18
19
20
2T
22
23
24
25
26
27
28
29
3g
32
33

Duplicate Statement Label
Illegal DO Termination
Block Name = Procedure Name
Array Name tlisuse
COt'll,lON Name Usage
wrong Number of SubscriPts
erray Multiply EQUMTENCEd within a Group
t'lultiple EQUIVALENCE of COMMON

COI'IMON Base Lowered
Non-COMMON Var iable in BLOCK DATA
Empty List for Unformatted WRITE
Non-Integer ExPression
Operand Mode Not Compatible with Operator
ttixing of. Operand Modes Not Allowed
Missing Integer Variable
Flissing Statement Number on FORMAT
Zero Repeat Factor
Zero Format Value
Format Nest Too DeeP
Statement Number Not FOF.ttlAT Associated
InvaI id Statement Number Usage
No Path to this Statement
Missing Do Termination
Code OutPut in BLOCK DATA
Undefined Labels Have Occurred
RETURN in a Main Program
STATUS ETTOT ON READ
Invalid Operand Usage
Function with no Parameter
Hex Constant Overflow
Division by Zero
Array Name ExPected
Illegal Argument to ENCODE/DECODE

L25
L26
L27
128
t29
r3a

13I
L32
133
134
135

Warnings:

or

2.I

2.I.7

Paqe 11

spec i fy
The se

its
if you
mistake

Microsoft ITORTRAN-80 User's Manual

SECTION 2

Linking FORTRAN Programs

LINK-80 Command Scanner

Format of Comnands

The

Each command to LINK-8O consists of a number offilenames and switches separated by commas:

objdevr : filename.ex t/ switchl,objdev2 : filename.ext, . . .
If the input device for a file is omitted, thedefault is the currently logged disk. If theextension of a file is omitted, the default is.REL. After each line is typed, LrNK will toad orsearch (see,/s bel0w) the specified files. AfterLINK finishes this process, it will list al1symbols that remained undefined followed by an
aste r isk .

Example:

A>LINK
*l,lAIN
SUBR1* (SUBRI is undefined)

*SUBRI
*iG (Starts Execution - see below)

Typically, to execute a FORTRAN program andsubroutines, the user types the Iist oi iilenamesfollowed by /C (begin execution) . If the FORTRANpTggrams reguire any FORTRAN Library routines, thevwiIl be satisfied automarically bt -;;;;";i;;
FORLTB.REL before execution begins. ri the useiwishes to first search Iib;aries of his own, heshould append the firenames that are forlowed by /sto the end of the 1oader command string.

2. L.2 LINK-8O Switches

LINK-80 has a number of switches that
actions affecting the loading process.switches are:

Switch Action
R Reset. put loader back ininitial state. Use /nloaded the h,rong file by

Microsoft FORTRAN'80 User's Manual

E or E:Name

G or G:Name

Examples:

* /itt

*MYPROG, SUtsROT ,

and want to restart.
effect as soon as it is
in a command string.
Exit LINK-80 and return to the
Operating System. FORLIB. REL will
be searched on the current disk to
satisfy any existing undefined
globals. The optional f orn E: Narne
(where Name is a global symbol
previously defined in one of the
modules) uses Name for the start
address of the program. Use /e to
load a program and save the memory
image.

Start execution of the program as
soon as the current command line
has been interpreted . FORLIB, REL
will be searched on the current
d isk to sati sfy any ex isting
undefined globals if they ex ist.
Before execution actually beg ins,
LINK-8l prints three numbers and a
BEGIN EXECUTION message. The three
numbers are the sta-rt address, the
address of the next available byte'
and the number of 256-byte pages
used. The optional form G:Name
(where Name is a globai symbol
previously defined in one of the
modules) uses Name for the start
address of the program"

List all undefined gLobals as soon
as the current command line has
been interpreted.
Map. List all defined globals and
their values, and all undefined
globals followed by an asterisk.

Search the filename immed iately
pr eced ing the / S in the comrnand
str ing to satisfy any undefined
g lobal s .

List all globals

MYLIB/S
LOad MYPROG.REL and SUBROT.REL and
then search MYLIB.REL to satisfy
any remaining undefined globals.

Page 12

/R takes
encounter ed

M

S

titic roso f t FORTRAN-8 0 User I s l"lanual Page t3

*/c

Sample Link2.2

2.3

A>LBO
*EXAMPL, EXMPLl/G
[304F 30AC 49)
IBEGIN EXECUTION]

L7 92
14336

-16383
I4

TT2
A>

Format of LINK

Begin execution of maln program

14336
-r 63 83

I4
TT2
896

Compatible Obiect Files

NOTE

Section 2.3 is reference material for userswho wish to know the road fornat of Lrl.rK-80relocatable object files. I,tost users rsillwant to skip this section, as it croes notcontain material necessary to the operationof the package

LrNK-compatibl" object files consist of a bitstream. rndividual fields within the bit strean
3t: not aligned on byte boundaries, except as notedbelow. use of a bit streann for relocatabr-e ob j ectfiles. keeps the size of objecL f iles to a miniinum,thereby oecreasing the number of disk read s/writes.
There are two basic types of load items: Absol_uteand Relocatabre. - ine fir st oit of an itenindicates one of these two tvpes. rf the first bitis a g, the following B bits are loaded as anabsolute byte. If the first bit is a I, the next zbits are used to indicate one of four types ofrelocatable items:

00

AI

Special LINK item

Program Relative.
bits after addinq
base.

Data Relative. Load
bits after adding the

(see below) .

Load the following l6
the current program

the following t6
current Data base.

LA

!4icrosoft FCRTRAN-80 User' s Manual Page 14

11 Common Relative. Load the following 16
bits after adding the current Common
base.

SpeciaL LINK items consist of the bit stream IAo
f ol l-owed by :

a four-bit control field

an optional A field consisting
of a two-bit address type that
is the same as the two-bit field
above except gg specifies
absolute address

an optional B field consisting
of 3 bits that give a symbol
length and up to 8 bits for
each character of the symbol

A general representation of a special LINK item is:

I g0 xxxx yy zzz + characters of syrnbol name

A field B field

xxxx Four-bit control field (0-f5 below)
yy Two-bit address type field
zzz Three-bit symbol length fieLd

The following special tlpes have a B-field only:

A Entry symbol (name for search)
I Select COIvlt'lON block
2 Program name
3 Reserved for future exPansion
4 Reserved for future expansion

The following special LINK items have both an A
fieldandaBfield:

5 Define COMIqON size
6 Chain external (a is head of address chain,

B is name of external symbol)
7 Define entry point (A is address, B is name)
I Reserved for future expansion
9 Reserved for future expansion

The forlowing special LrNK items have an A fieldonly:

I0 Define size of Data area (a is size)

-

Microsoft FORTRAN-80 User's Manual

2.4 LINL!.!. Error Messaqes

LINK-80 has the following error messages:

11 Set loading location counter to A

L2 Chain "aai6"=.
a is head of chain'

reptac!-;ii-entries in chain with current
location counter '
The last entrY in the chain has an

address field of absolute zero '
13 Define Program size (A is size)
fe End ptoi.ufr (forces to byte boundary)

The following special Link item has neither an A nor
a B f ield:
15 " End file

Page 15

A /G switch was issued 'but no main Program
had been loaded.

The last file given for inPut
was not a ProPerlY formatted
LINK-8O object file.

Not enough memorY to load
pro9 ram.

Unr ecognizable LINK-80
com:nand.

A file in the command string
did not exist.

?No Start Address

?Loading Error

?Fatal Table CoIlision

?Command Error

?File Not Found

t2nd COI{MON Larger /xxxxxx/
The first definition of
CO!{!'{ON block ,/xxxxxx/ was not
the Iargesi. definition. Re-
order nodule Ioading seguence
or change COtttllON' block
definitions.

YYYIYY
More than one definition for
the global (internal) sYmbol
YYYYYY was encountered during
the Ioading process.

tMult. Def. Global

l,licrosof t FORTRAN-80 User's ltanual Page 16

SECTION 3

The I.{ACRO-80 Assembler

Format of l'lACRo-80 ComtnanQs

MACRO-8Q- Command Strings

The format of I4ACRO-80 command str ings is identical
to the format of FoRTRAN-80 command strings. see
section I. I. 1.

3.1

3.1.1

3.L.2

3.3.1

MACRO-80 Switches

I4ACRO-86 Switches are the
switches excePt that ,/P, /ll
See section 1 - 1. 2.

same as FORTRAN-80
and /O have no effect.

3.2 Format of I'{ACRO-8O Source Files

In general, MACRO-80 accepts a source file that is
almost identical to source files for INTEL

compatibleassemblerS.Inputsourcelinesofupto
132 characters in lenqth are acceptable'

Theassembleroutputsamodulenametotheloader.
Thismodulenameconsistsofthefirstsix
characters of the title if a TITLE statement is
included. If no TITLE statement is included, the
module name is made from the file name'

3.3 AsselqLls; Features

The features of the MACRO-80
described brieflY below.

Names

AIInamesarel-Scharacters.T.hefirstcharacter
i= an alpha character (A-Z) or $' fne remaining
characters are alphanumeric (A-2, 6-91 or $' Names

followed immediately by two number signs rvith no
intervening blanks (e.g. NAME##) are classified as
external. This type of name is an alternative to
the program statement

assembler are

EXT NAI{E

RYrnorr --l
14 E

or

Microsoft FORTRAN-89 User's Manual

3.3.2 Constants

a. Decimal:

b. Octal:

c. Hex:

d. Character:

3.3.3 Label s

3.3.4

Numbers consisting of decimal
digits and havinq no leading zero.
The allowable range is 65535 to
-6553s.

Numbers consisting of octal digits
and having a leading zero or a
trailing a or O. The allowable
range is 0L77771 to -g|i7'iii .

Numbers consisting cf one to four
hexadecimal digits and having theform x'hhhh, . One-digit or ihree-digit values are treated as thoughzeto were to the left (i.e., X'A,and X'0A' are the same) . Theallowable range is X.FFFF, to
-X rFFFF' . Numbers consisting offrom one to four hexadecimal digitsimmediately followed by the suffixH (e.g., hhhhH) are also allowed.
One or two ASCIf characters
preceded and follorved by ouotation
T.ark! (i.e.r "a" or "BC,'dr ,BC,).
The delimiters may be either sinqiequotes (') or double quotes (;),but the starting and end delimitersm.ust be identical . Whenever one
lYgq.of guote is used as adel imiter, the other type of quoteis allowed as a charactei.

Page I7

A label is a name that does not contain an imbeddedspace and is terminated by a cofon t,) . Labelsmust begin in corumn r and ali nu*.= --beginning
incolumn I will be interpreted as Iabels.

lgnseeyently, opcodes_ and pseudo-ops
"innot beginln column I. Labels aione on a 1ine with nofurther opcode or pseudo-op are aIIowed.

Oper ator s

An operator consists of an ggg0
the pseudo-operations described

mnemonic or one
in Section 3.4.

3.3.s Expressions

of

I,licrosof t FORTRAN-80 User's Manual

An address expression consists of a
constant or an address expression + or
expression. An address expression uses
assigned address of a name or the l-6-bi
constant to form a 16-bit vaf ue whicit,
expression is totalJ y calculated, is
the field size required by'the operator
precedence our ing expression evaiua
follows:

3.3.6

Parenthesized expressions
*, /, MOD, SHL, SHR
+, (unary and binary)
Logical NOT
Logical AND
Logical OR, XOR

An expression rnay not contain any rmbedded blanks
(except those appear ing i-nside character
constants) . An expression is terminated by a

semicolon or a tab.

Remar ks

Page 18

name or a
an adcircss

the currcnt
t value of a

a fter thc
t.rLlncatcd tc

^^^, ^ Fn r. vug! qLJr

ticn is 3s

A remark is indicated
character is a sem
whole statement is a
following the end of
always terminated bY

Statement Form

by a st a temen t tvho se f.

icol"on (;) (in whrch casc
rernark) , or bv any cl'larac
an oPerand field. ri l:eiirar
a carr iage return.

rrst

L!- L .--

r. ; ^\ IJ

3.3.7

A statement consists of an optional label (if it is
absent, at Ieast one space or tab musL bc usecl in
its place), followed by an operator, follorred bv as
many acldress expressions as the operator reqllires,
followed by att optional remark' and terminated bv a

carriage return. I'lu1tiple blanks or tabs maY be
used to improve readabil ity (except inside
character constants or character strings) .

3.4

3.4.1

Pse udo

Define

O-perations

Bvte

DB

EI,E2, Fn

''Character Str ing"

'Character Str ing'

DB
or

or
DB

^

t'!icrosoft FORTRAN-E0 User's ManuaI Page 19

Each of the address expressions 81, E2,...8n is
evaluated and stored in n successive bytes. The
character string form allows storing of multiole
ASCII characters and may be mixed with the adoress
expression forrn. Two-character character constantsare treated as character strinqs unless theiz are
combined with another acldress expression.

Either single or double guotes may be usecl ascharacter string derimiters, but the starting andeno del initers must be identical. It ispermissible to use the del imiter guotes ascharacters, but the guote marks must appear twicefor
_ every charac€er occurrence desired. Forexample:

DB I,

will stor e
I

Each character
one byte with

3.4.2 D"-5.ne Character

DC

Only doubie
deI imiter s,
char ac ter s .

I am ""gt"ut"" today',

am "great" today

in the character string is stored asits high-order bit set [o zero.

"Character Str ing,'

guotes-may be used as character stringand double guotes may not be used ui

Each character in
one byte with its
for the last byce
to one.

the character
high-order bic
which has its

str ing i_s stored as
set to zero exceot

high-order bit set

3.4.3 Define

The address expression
bytes of space are aI
must be defined prior
Define Word

Space

DS

DW

Each address
n successive

E

E is evaluated and that manylocated . AI I narnes used in Eto the DS statement.

El, E.2, ..., En

expression is evaluated and store,lword s .

3.4.4.

AJ

Itlicrosof t FORTMN-80 User's ManuaI Page 26

3.4.5 Proqram Te rm inat ion

END E

This statement is the last statement of each
program. TI're ootional adoress exoression E gives
the program executiotr address. If E eva-Iuates to
absolute zero, it is equivaient to Ilo execution
adoress.

3.4.6 Terminated Conti it ional Assembly

ENDIF

Term inate s concl it ional
previous IFF or IFT.

Define EntrY Points

assembly initiated by

3.4.7

igned the
The label

appear ed
be defined

ENTRY
or

PUBLIC

EXT

EXTRI\

NI, N2, .l

Nl, N2, ...,

Nl, N2,

NI, N2,

Nn

NN

The names Nl , N2, . . . I Nn are entry po ints f roin
external programs and act as names for the program
being assembled. The names must appear in an Ei'i'IR-Y

or iUgLfC statenent prior to their appearance as a

1abel.

3.4. I Define Equivalence

3.4.9

Label EQU E

The label of the EQU statement is ass
adoress given by address expression E'
is reguirea ancl must not have previously
as a label . Atl names usecl in E must
prior to the EQU statement.

Define External l

The names NI, N2,
external references ano
Iabel.

...' Nn

..., Nn

., Nn are defined to be
may not have been useo as a

3. 4. 13

Microsoft FORTRAN-80 Userrs Manual

3. 4.10 FaIse Conditional Assemblv

Page 2I

evaluated and if it is
down to the next EIJDfF
Trtre (not =0), the

IFF E

The address expression E isFalse (=01 , all statementsare assembled. If E isstatements are not assembled

3. 4.11 True Cgnditional Assemblv

IFT E
or

IF

The address expression E is evaluated and if it isTrue (not =0) , all statements down to the nextENDIF are assembled . If E i; Fa.L se (=0) , thestatements are not assembled.. unlimited n"=iing ofconditionals is allowed

3.4.12 pefine Or igin
ORG E

The address expression E is evaluated and theassenbler assigns generated code starting with thatvatue. Arl names isea in E ;;;r ;; defined prior
::.:l;"i|" sraremenr, and the moae'or n-*r=t ";i be

Paqe Break

PAGE

A page break will occurstatement will not IistIf a TfTLE statement has(up to I2S characters)of the page.

3.4.14 Set

tabel SET E

The PAGE
9ener ated .
the title
at the top

assigned the
The labe1 is
appeared as a
defined pr ior

on the listing.
and code is not
been included,
will be printed

The label of the SET staternent i saddress given by
"*piession E.required and must not hurr" previouslyIabel. Al1 names used in E must beto the SET statement.

3.4.r5

i'licrosoft FORTRAN-80 User' s ManuaL Page 22

EQU statements
of label values.
statement will

The difference between the SET and
is that SET allovrs redefinition
Redefinition of a I'abel bY an EQU

result in an error.

Title

3.5

TITLE ICOI"IP INTEGER COI"IPARE ROUTINE

TITLE followed by a title of up to L25 characters
is allowed. ' This title will appear at the top of
each page, The title must be terminated by a

carr iage return. The module name that the
assembler outputs to the loader is taken from the
first six characters that fo1low the TITLE
statement. If no TITLE statement is included, the
assembler outputs to the loader a module name that
is taken from the file name.

Notes

An asterisk (*) indicates the value of the
location counter at the start of the statement'

When the assembler is entered, the origin is
assumed to be Relative-O.

3. Address expressions used in the cond itional

1.

2.

4.

assembly pseudo-operations IFF and IFT must
have aII nimes defined prior to the use in the
expressionr EDd the expression must be
AbsoIute.

Address expressions whose final mode is other
than Absoiute must generate assembly data that
is stored as two bYtes.

The following names are defined by the
assembler to have the ind icated Absolute
values.

5.

A=7
H=4

B=A
L=5

C=1
l'1=6

D=2 E=3
SP=5 PSW=6

trlicrosof t FORTRAN-80 User's t{anua1

3.6 Sample Assemblv

A>!180

*EXMPLI , TTY: =EXl,tPLl

MAC80 I.g

Page 23

0ggc
0agF

c2 gg06
EB

PAGE

0aIs0
gs20a
g03gg
09404
40450
40569
606AA
agi 0a
ga8a0
90900
0I00s
gLMg
0L2sa
0I36A
0I4gg
glsgs
9r600
0Ii0s
07869
gr9g0
620A0
02190
92290
02300
924A6
g25gg
42609
szig0
42800
02999

PAGE

9006,

g0t0 i3agrr 23ggt2 72
0nI3 c9
00I4

t'lACg0 I.A

csL3 0090 ' LOOP

I

; CSL3 (Pt , P2)

;SilTFT PI LEFT CIRCULARLY 3 BITS
;RETURI{ RESULT IN p2

ENTRY CSL3
;GET VALUE OF FIRST PARAI'IETER
CSL3:

MOV A,M
INX .H
MOV H,M
MOV L,A

; SHTFT COUI{T
MVI B,3

LOOP: XRA A
;SHIFT LEFT

DAD H

;ROTATE IN CY BIT
RAL
ADD L
MOV L,A

;DECREMENT COUNT
DCR ts

;ONE I'IORE TIME
JNZ LOOP
XCHG

;SAVE RESULT IN sECoIiD PARAMETER
MOV t4, E
INX H
IIOV M, D
RET
END

2

g0s0

ggag 7Egagt 23
a0a2 66
aga3 5F

g0g4 g6 03
aag6 AF

a0gi 29

a0g8 ri
0s09 85
0ggA 6F

g608 05

I-licrosoft FORTRAN-80 User' s Manual Page 24

3.7 MACRO-80 Errors

I1ACRO-80 errors are indicated by a one-character
f i.ag in column one of the l isting f iIe. If a

tisting file is not being orinted on the terminal,
each erroneous line is also printed cr displayeC on
the terminal. Below is a list of the MACRO-80
Error Codes:

Code Meaning

B

D

E
L
M

N
o
T
U
V
2
P

0

tslock name in DATA
Too many ENDIFS
Bad octal or hex or binarY digit
Expression error
No label in EQU
Label or symbol defined nore than once
Name too Iong
Bad operator (oPcode)
Illega.I field ternination
Undefined symbol
Value error to l'lOD

I'lissing second field for oPcode
Phase error
Missing or incorrect character string
del imiter

Mricrosoft !'ORTRAN-86 User rs ManuaI Page 25

cease (control is
system) . Execution
. However, after 2g

SECTION 4

FORTRAN Runtime Error Messages

Me an ingCode

Vlarning Errors:

rB
TL
OR
DE

IS
BE
IN
OV
CN

SN
A2
IO
BI
RC

FataI Eirrors:

Input Buffer Limit Exceeded
Too Many Left Parentheses in FORIvIAT
Output Buffer Limit Exceeded
Decimal Exponent Overflow
(Number in input stream had
an exponent larger than 99)
Integer Size Too Large
Binary Exponent Overflow
Input Record Too Long
Arithmetic Overflow
Conversion Overflow
on REAL to INTEGER Conversion
Argument to SfN Too Large
Both Arguments of ATAN2 are O

Illegal I/O Operation
Buffer Size Exceeded During Binary I/O
Negative Repeat Count in FORMAT

Illegal FORMAT Descriptor
FORI'IAT Fietd ttidth is Zero
l,lissing Per iod in FORMAT
FORMAT Field Width is Too Small
I/O Transmission Error
Missing Left parenthesis in FORI{ATDivision by Zero, REAL or INTEGERfllegal Argument to LOG Function(Negative or Zero)
fllegaI Argument to SQRT Function (Negative)
Data Type Does Not Agree With FORMATSpecification
EOF Encountered on READ

rD
FA
ltP
FW
IT
ML
DZ
LG

SQ
DT

EF

Runtine errors are surrounded by asterisks as forrows:
FW

Fatal errcrs cause execution toreturned to the operating
continues after a warning errorwarnings, execution ceases.

Microsoft FORTRAN-80 User' s l{anual

SECTIO}I 5

Page 26

Operating Systems

This section describes the use of
different disk operating systerns.

FORTRAN-80 under the

5.1 CPM

Create a Source File
d;ffi 5 Eo'F FIT6 followins the standard format
for FORTRAN source programs, using the CPM editor.
Filenames are up to eight characters long ' with
3-character extensions. FORTRAN-80 source
filenames should have the extension FOR and
MACRO-80 source filenames should have the extension
MAC.

Compile the Fource File
Before attempting to compile
produce obj ect code for the

the program and
first time, it is

advisable to do a simple syntax check. Removing
syntax errors will el iminate the necessity of
recompiling later. To perform the syntax check on
a source f i1e called l"lAxl. FOR, type

FBA
'=MAXI

This command compiles the source file MAxl. FOR
without producing an object or listing fi1e. If
necessary, return to the editor and correct any
syntax errors.

To compile the source file and produce
and listing file, type

an obj ect

F80 MAXl, MAXI=I'IAXI
or

F80 =MAX1,/L

The compiler will create a REL (relocatable) file
called MAXI.REL and a listing file ca1led MAxl.PRi{.

L,o-ad ing, Execu.t iJg and Sav ing
LrNK-80)

the Program (Using

To load the program into memory and execute it,
type

L80 t"lAxl/G

To save the memory image (object code) , type

l,licrcsoft FORTRAN-89 User' s t"lanual Page 27

L80 MAXI/E

which will exit from LINK-80, return to the monitor
and print three numbers: the starting address for
exectrtion of the grogram, the end adoress of the
program and the number of 256-byte pages used. For
example

tzltc 401A 481

Use the CPM SAVE command to save a memorv imaqe.
For example

SAVE 48 MAX1.COM

(Programs are loaded beginning at LggH (AfrAe) .)

An object code file has now been saved under the
name of your original source file (in this case
I'lAXl) on the d isk. To execute the program simply
type +-he program name

MAXl

after the CPM monitor prompt.

CPl,i : Available D.gvices

A:, B: disk drives

CPlt Disk Filename Standard Extensions

HSR:
LST:
TTY:

FOR
I{AC
REL
PRN

high speed reader
I ine pr inter
Teletype or CRT

FORTRAN-80 source file
MACRO-80 object file
relocatable object file
listinq file

COII absolute file
CPM Command Lines
CPM commalfr ffies and f iles are supported; i.e., a
FORTRAN-80, MACRO-86 or LINK-80 command tine may beplaced in the same line with the CpM run command.
For example, the command

A>FB0 =TEST

causes cpM to 10ad and run the FORTRAN-8O compiler,which then
. compiles the program TEST. FOR andcreates the file TEST.REL. Trris is equivarent tothe following series of commands:

Microsof t FORTRAN-80 User's l'lanual

A>F8O
*=TEST
*^c
A>

5.2 DTC t"licrofile

Page 28

an

Create a Source File
Create a Fouice file fotlowing the standard fornat
for FORTRAN source programs, using the DTC eoitor.
Filenames are up to five characters long, with
l-character extensions. FORTRAN-80 and I'iACRO-8fi
source filenames should have the extension T.

Compile the Source File
Before - attempEing Eo co;npiIe the program and
produce objecL code fcr the first time, it is
advisable to do a simple syntax check. Removing
syntax errors rviIl el iminate the necessity of
recompiling 1ater. To perform the syntax check on
the source f ile called I4AXI, tyPe

F80 I =MAXI

This command compiles the source file MAXI without
producing an object or listing file. If necessdE!r
return to the editor and correct any syntax errors.

To compile the source file MAXI and produce
object and listing file, tyPe

or
F80 MAXI

'
I'IAXI=MAXI

F80 =!4AXI/L/R

The compiler wiII create a relocatable file called
MAXI.O and a listing file called MAXI.L.

Loadinq, Executinq and laving the Progrgl (Using
LrNK-80)

To load the program into memory and execute it'
type

L80 t'lAxt/G

To save the memory image (object code) , type

LBo MAxl/E

which will ex it f rorn LINK-80
monitor and pr int three
address for execution of
address of the program, and
pages used. For example

, r€turn to the DOS
numbers: the starting
the program, the end
the number of 255-bvte

!licrosoft FORTRAN-E0 User's !'lanuaI

40rA 481

SAVE conmand to save

Page 29

memory rmag e .

sA t"lAxl 2809 401A

2890H (zLgggQ) is the load address used by the DTC
Operating System.

An object code file has norv been saved under the
name of your originai source file (in this case
MAX1) on the disk. To execute the program, simply
type

RUN MAX1

after the DTC monitor prompc.

OfC UrcrofifS - Available Devices

T2T6C

Use the DTC
For example

DLC

DO:, D1;, D2z, D3:
TTY:
LIN:

Disk Filename Standard

disk drives
Teletype or CRT
1 ine pr inter

Extensions

5.3

T FORTRAN_8O or I{ACRO-EO
O relocatable object filL lisring file

DTC Command Lines
OtC commanO l ines ar e supporte,J asSection 5.1, Cpl"l Cornmand Lines.

AItair DOS

EDIT I'IAX1

af ter the monitor prompt,,.,,.
respond

source file
e

descr ibed IN

The ed itor will

standarci fornat
you are finished

exit the editor.

Create a Source File

-

ureare a source file using the Altair Dos editor.The name of the file should have four characters,and the first character must be a letter. Forexample, to create a file called MAXI, initialize
DOS and type

CREATING FILE
00L0s

Enter the program, following thefor FORTRAN source programs. Whenentering and editing t6e program,

Mic rosof t FORTRAN-80 User ' s t'lanual Page 30

Compile lhe Source File
Load the compiler by typing

F80

in response to the monitor prompt. The cornpiler
will return the prompt char acter tr * .' .

Before attempting to compile the proqram andproduce object code for the first time, it is
advisable to do a sinnple syntax check. Removinq
syntax errors will e1 iminate the necessity of
recompiling later. To perform the syntax check on
the source f ile ca11ed Ir/tAX1, type

, =&MAXI.

in response Eo the compiler prompt. (The editor
stored the program as &MAXl) Typing ,=&MAXl.compiles the source file MAX1 without producing anobject or listing file. If necessary, return to
the editor and correct any syntax errors.
To compile the source file MAX1 and produce an
object and listing fiIe, type

MAXIR, &MAXI=&MAXl.

The compiler will create a REL (relocatable) file
calred I4AX1RREL and a listing file callec &MAX1Lsr.
The REL filename must be entered as five characters
instead of four r so it is convenient to use the
source filename plus R.

After the source file has been compiled and aprompt has been printed, exit the compiler. If the
computer uses interrupts with the terminal, type
Control C. If not, actuate the RESET switch on tfre
computer front paneI. Either action wilI return
control to the monitor.

Using LINK-80
Load LINK-80 by typing

L80

after the monitor prompt. LINK-80 will respond
with a 'r*'r prompt. Load the program into memory byentering the name of the program REL file

MAXIR

!xegg!!E and Savincl
Now you are ready to
t.hat is in memorv

the Proqram
either exccute

or save a memorv
the program

image (object

Microsoft FORTRAN-80 User's ManuaL

FO; ,
TTY:

Altair DOS

F1:, F2t, disk drives
Teletype or CRT

Disk Filename Standard Extensi.ons

Page 31

To execute thecode) of, the program on
program., type

disk.

/c
Tc save the memory image (object code) , type

/n
which will exit from LINK-80, return to the DOS
monit,or and print three numbers: the starting
address for execution of the program, the end
address of the program, and the number of 256-byte
pages used. For example

[2630L 44s54 3sl

Use the DOS SAVE command to save a
Type

memory rmage.

sAV MAXI A 17106 44A54 26301

L7Ig0 is the load address used by Altair DOS for
the floppy disk. (With the hard disk, use 44Tgg.)

An ob j ect code f ile has now been saved under tl-re
name of your original. source file (in this case
MAXI) on the disk. To execute the program, simply
type the program name

MAXI

after the DOS monitor prompt.

Altair DOS - Available Devices

Command
Command

ISIS.II

FOR
MAC
REL
LST

Lines
ffies

FORTRAN-80 source file
MACRO-80 source file
relocatable object file
listing file

are not supported with Altair DOS.

Create a Source FiIe(-reate a Source file
for FORTRAN source

following the standard formatprograms, using the ISIS_II

5.4

Microsoft FORTRAN-80 User's I'lanual Page 32

editor. Filenames are up to six characters 1ong, A
with 3-character extensions. FORTRAN-80 source
filenames should have the extension FOR. MACRO-80
source filenames should have the extension MAC-

Compile the Sou[ce File
BeTore attemptlng t- compile the progranl and
proouce object code for ttre first time, it is
advisable to do a simple syntax check. R,emoving
syntax errors wilI eliminate the necessity of
recompiling 1ater. To perforn the syntax check on
the source file called MAX1.FOR, tyPe

F80 '=MAXI
This comnand compiles the source file MAXl. FOR
without producing an object or Iisting file. If
necessary, return to the editor and correct any
syntax errors.

To compile the source file MAXI.FOR and produce an
object and listing file, type

F80 ltAxl, MAX1=MAXI
or

F80 =MAXI,/L,/R

The compiler will create a REL (relocatable) file
called MAXI.REL and a tisting file called MAXI.LST

Loadinq, Savinq and Executing the Program (Using
LrNK-80)
To load the program into memory and execute it,
type

LgA MAXI/G

To save the memory image (object code) , type

L80 r4AX1/E

which will exit from LINK-80, return to the ISIS-II'
monitor and print three numbers: the starting
address for execution of the program, the end
address of the program, and the numL'er of 256-byte
pages used. For example

tztgc 401A 481

If you wish to save a memory image of the program,
it. will be Ioaded beginning at 40ggH (4gOA0e).
Execution should begin at 4A0gH

Microsoft FORTRAN-80 User's Manual

ISIS-II - Available Devices

FO:, Fl:, F2t, disk drives

Page 33

TTY:
LST:

Teletype or CRT
1 ine pr inter

ISIS-II Disk Filename Standard Extensions

FOR FORTRAN-80 source file
MAC MACRO-80 source file

. REL relocatable object file
LST listing file

ISIS-II Command Lines
rsrs-rr command lines are suoported as described in
Section 5.I, CpM Command Lines.

os-cP/M@

FORTRAN

Sept. 1978

Portions of this
@ 1978 by Ohio

@ 1978 by Micro
@ 1978 by Digital

Manual are
Scientific Inc.

Soft lnc.

Research lnc.

CP/M is a registered trade
rnark of Digital Research Inc.

I

'^)-

t\

I

I

I

Disctainer
Ohio Scicntific - .. msk;=- -'-;-o tlamanties or

Hiir;:n;E:iiiffi:il-{;'i1'n$="9"F['3!iiii*:iTlall[UntEi;*iHil.:::ii:'nsi="s"8['sliill*:iiutcstcd tncl iI' -beriaued to bc l^?
annarn-rFcc. riE a6-iot guenantee thc-Pf99l'mf.1lcrnor-f1ce. a5-not-qtenantee thc PfogP'msrrr* sl I -trrra<r -;n onoblems tsFFOr-?-r3c. FrG r'rL' 'rsv !'sr',E"-dF -dFobrefis thltiln-i::n**.ii *[:* Fi*"B:o ue. i.'itl ii.. iili:i
lH[, iF!:F- u*l]' * o'['"i"o ; i".,,H3*'Hti*

^'e! x "":iflfrEtiFiSH' $iti'^ "i""i,,-"i]-tircuiliten--s ^nake an

Hifil;t"ffi-iiiig.u'dil' "ilr'=lpp"ft-o+f,i:
lBl"BiB

l:iiil;t"ffi"iiiigrqil' tirir'=tpp"ft-o+f,i: *lBl*"BiB
occul^ilFEilivrF possible'

I

^.
Microsoft 8080 FORTRAN IV
FORTRAN-EO Reference planual

Addendum to Appendix E, pages 100-101
April, 1978

RANDOM ACCESS DISK FILES

The CP,/M and ISIS-If versions of FORTRAN-8O now provide
random disk accessing, i.e., a record may be specified
with a disk READ or WRITE.

The record number is specified by using the REC=n option
in the READ or WRITE statement. For example:

f = 10

WRITE (6 r20 TREC=1 ,ERR=50) XrY rZ

This program segment writes record 10 on LUN 6. If a
previous record 10 exists, it is written over. ff no
record 10 exists, the file is extended to create one.
Any attempt to read a non-existent record results in an
T/O error..

The record length of any file accessed randomly is assumed
to be 128 bytes (1 sector). Therefore, it is recommended
that any file you wish to read randomly be created via
FORTRAN (or Microsoft BASIC) random access statements.

Random access files may be created via FORTRAN programs,
by using either binary or format,ted WRITE statements. If
the WRITE statement does not cause enough data to be trans-
ferred to fill the record (128 bytes), then the end of the
record is filled with zeros (NULL characters).

ISIS-II DIS,K F'ILES

Disk files may now be created and accessed by FORTRAN-8O
programs running under ISIS-II. Files are accessed either
sequentially or randomlyr ds described in Appendix E of the
FORTRAN-80 manual. The only programming difference under

tine have been altered slightly from the form described j-n

llicrosoft 8080 FORTRAN IV
FORTRAN-80 Reference Manual
Addendum to Appendix E, pages 100-101
Apri1, 1978

page 2

Appendix E. The form of an OPEN call under ISIS-II is
CAIL OPEN (LUN, Filename)

where:

LUN = a Logical unit Number to be associated with the file
(must be an integer constant or variable with a value between
1 and 10).

Filename = an ASCrr name which the operating system wilr asso-
ciate with the file. The Filename should be a Horlerith orLiteral constantr or a variable or array name where the
variable or: array contains the ASCrr name. The filename
should be in the form normally required by ISIS-II, i.e., a
device name surrounded by colons, followed by a name of upto 6 characters, a period, an extensi-on of up to 3 characlers' \
and a space (or other non-alphanumeric character). The
Filename must be termirrateq !y. a non-alphanumeric chfficter.
lhe follovring are examples of valid OPEN calls:

r:F1:FOO.DAT ')

' :F5:TESTFF.TIIIP ')
CALL OPEN (10, ':F0:A.DAT ')
CALL OPEN (4, ':F3:A.B ')

CALL OPEN (6,

CALL OPEN (1,

llicrosoft 8040 FORTRAN IV
FORTRAN-8O Reference Manual
Addendum

l,lay, 1978

APPENDIX F

FORTRAN-80 Library Subroutines

The FORTRAN-8O library contains a number of subroutines that
may be referencgd by the user from FoRTRAN or assembry pro-grams. In the following descriptions, $aC refers to Lfre
floating accumulator; $AC is the address of the 1ow byte of
the mantissa. $AC+3 is the address of the exponent. - $oaCrefers to the DOUBLE PRECISION accumulator; $OaC is the ad-
dress of the low byte of the mantissa. $paC+Z is the address
of the DOUBLE PRECISION exponent.

All arithmetic routines (addition, subtraction, multiplica-
tion, division, exponentiation) adhere to the following
calling conventions.

1. Argument 1 is passed in the registers:
Integer in [HL]
Real in $eC
Double in $oeC

2. Argument 2 is passed either in registersr or in memory
depending upon the type:

a) Integers are passed in [HL], or [DE] if tHLl
contains Argument 1.

b) Real and Double Precision values are passed
in memory pointed to by [Ht].
([HL] points to the 1ow byte of the mantissa.)

The following arithmetic routines are contained in the Librafi

Function ntlT ument 2

Addition

Division

Exponentiation

t'lultiplication

Subtraction

Real
Real
Double
Double
Double

Integer
Real
Real
Double
Double
Double

Integer
Real
ReaI
Double
Double
DoubIe

Integer
Real
Real
Double
Double
Double

Real
Real
Double
DoubIe
Double

Integer
Real
Integer
Real
DoubIe

Integer
Integer
Real
Integer
Real
Double

Integer
Integer
Real
Integer
ReaI
Double

Integer
Integer
Real
Integer
Real
Double

Integer
Real
Integer
ReaI
DoubIe

$ae
$AB
$AQ
$an
$AU

$og
$oa
$os
$DQ
$on
$Pu

$89
$ee
$ns
$EQ
$ER
$su

$M9
$ua
$Mg
$ItlQ
$MR
$MU

$se
$se
$SQ
$sR
$su

- -

Additional Llbrary routines are provided for converting
between value types. Arguments are always pas.sed to and
returned by these conversion routines in the appropriate
registers:

Logical in tAl

Integer in tHLl

Real in $AC

Double in $DAC

Name Function

$ce
Scc
$ctt
$cJ
$cr
$cx
$cY
$cz

Integer to Real
Integer to Double
Real to Integer
Real to l,ogical
Real to Double
Double to Integer
Double to Real
Double to Logical

Microsoft FOR.TRAN-80 Userrs l4anual
Addendum to: SECTION 1

Compiling FORTRAN Programs
l4ay, 1978\ '

The following additions are to be made to Section 1

(Compiling FORTRAN Programs) of the Microsoft FORTRAN-8O
Userrs Manual.

1. Page 6

Add to Section 1,.1.2 FORTRAN-80 Compj-lation Switches

Switch Action
Specifies to the compiler that the generated
code should be in a form which can be loaded
into ROlvls. When a /M is specified, the gen-
erated code will differ from normal in the
following ways:
1. FORI4ATs will be placed in the program

area, with a "JI{P" around them.
2. Parameter blocks (for subprogram calls

with more than three parameters) will
be initialized at runtime, rather than
being initialized by the loader

NOTE

If a FORTRAN program is intended for ROM, the progralnmer
should be aware of the following ramificationst _
1. DATA statements should not be used to initialize RAM.

Such initialization is done by the loader, and will
therefore not be present at execution. Variables and
arrays may be initialized during execution via assign-
ment statements, or by READing into them.

2. FORMATs should not be read into during execution.

3. If the standard library I/O routines are used, DISK
files should not be OPENed on any LUNs other than 6, -
7,8r9r10. If other LUNs are needed for Disk I/O,
$LUNTB should be recompiled with the appropriate
addresses pointing to the Disk driver routine. -

lrlicrosoft FORTRAN-8O User I s Manual
Addendum to: SECTION 1

Compiling FORTRAN Programs
May, 1978

Page 2

A library routine, $fNff, sets the stack pointer at the top
of available memory (as indlcated by the operating system)
before execution begj-ns.

The calling convention is:
LXI Br(return address)
JMP $INIT

rf the generated code is intended for some other machine,
this routine should probably be rewritten.

Microsoft FORTRAN-80 Userrs Manual

Addenda to: SECTION 2
Linking FORTRAN Programs

Mayr 1978

The following additions are to be made to Section 2
(f,intcing FORTRAN Programs) of the Microsoft FORTRAN-80
User I s l'Ianua1.

1. Page 11-12
Add to Section 2.1.2 LINK-80 Switches

/u and /M also print the origin and end of the program and
data area in addition to selected globa1s. Example:

DATA 1OO 2OO

PROGRAM 1OOO 2OOO

The program informatj-on is only printed if a /D h,as been
done. Otherwise, the program is stored in the data area.

Switch Action

PandD

If a (filename),/N is specified, the
program will be saved on disk under
the selected name (with a default
extension of . COI\4 for CP,/lvl) when a
/E or /G is done. A jumP to the start
of the program is inserted if needed
so the program can run proPerly (at
100H for CP/M) .

/P and ,/D al1ow the origin(s) to be
set for the next program loaded. /P
and /D take ffict vrhen seen (not de-
ferred), and they have no effect on
programs already loaded. The form is
,/P: (address> or /D: (address), where
(address) is the desired origin in
the current typeout radix. (Default
radix for non-MITS versions is hex. -
/O sets radix to octal; /H to hex.)

LINK-8O does a default ,/P:<link origin)+3
(i.e., 103H for CP,/M and 4003H for ISIS) -to leave room for the jump to the start
address. If no /D is given, programs
load as usual, except tfte arel bise. is

-

^

!.ticrosoft FORTRAN-80 Urerrs Manual
Addenda to: Section 2

Llnking FORTRAI'I Programs
llay, 1978
Page 2

settable. If a
Common areag are
data origin and
progr€rm origin.

* /P z 200,FOO
DATA 2OO*/R

/D is given, all
Ioaded starting

the program area
Example:

300

Data and
at the
at the

2.

*/P:200 /Dz400,FOO
DATA 4OO 480
PROG 200 280

Page 13-14
Add to Section 2.3 Format of LINK Cornpatible Obiect Files
Loader type 9 is now in usei it is external + offset.
Type t has only an A field, there is no B field as pre-
viously documented. The value for type 9 will be added to
the two bytes starting at the current location counter.
-f,his-addition is done afte.r a /E or /G Ls givenr So unless
und,efineds remain, the effect is external + offset.
This type can also be used to add program and data relatives
or almost any other combination of relocation types. The
assembler, however, only handles the case with externals.

Page 15

Add to Section 2.4 LINK-8O Error l,lessages

3.

?Out of Memory

?<file> Not Found

rProgramltOverlavinq ::IData]

has

has
name

Area
A/D
data

replaced ?Fatal Table Collislon

replaced ?File Not Found. The
the file not found is printed.

or /P will cause already loaded
to be destroyed.

,'+,

l'licrosoft FORTRAN-8O Userrs Manual
SECTION 2
Linking FORTRAN Programs

?Start SYmboI

IProgram] or""lDataI
The program and d.ata irea intersect
and an address or external chain
entry is in this intersection- The
final value cannot be converted to
a current value since it is in the
area intersection.

- <name> - Undefined
' After a /Et or /Gz is given' the

symbol specified was not defined'

Loader t,lemory, Move An)n1tay (Y or N)?

After a /E or /G was given, either
the data or Program area has an ori-
gin or top which lj-es outside loader
memory (i.e., loader origin to toP
of meirorY). If a Y (cr) is given,
LINK-80 will move the area and con-
tinue. If anYthing else is given'
LINK-8O will exit. In either case'
if a ,/N was given, the image will
alreadY have been saved'

Addenda to:

May, 1978

Page 3

?Intersecting

orisin l*iffi]

Page 15

Add Section 2-5 Program

LINK-8O stores the first
$MsMnY if that sYmbol has
$l,lEMRY is set to the toP

Break Information
free location in
been defined bY

of the data area

NOTE

a symbol called
a program loaded.
+1.

?Can't Save Object File-J A disk error occurred when the file
was being saved'

Lf /D is given and the data origin is less
than the program area, the user must be sure
there is enough room to keep the program from
being destroyed. This is particularly.true
;iih-the disk driver for FoRTRAN-80 which uses

iMgMnv t" allocate disk buffers and FCB's'

1.

2.

llicrosoft FORTRAN-80 Usert s lvlanual
Addenda to: SECTION 3

The I'!ACRO-8O Assembler
t{ay, 1978

The following additions and corrections are to be made
Section 3 (The MACRO-80 Assembler) of the Microsoft
FORTRAN-80 UserIs Manual.

Page 16

Add to Section 3.1.2 MACRO-80 Srvitches
/C is the Cross 'Reference Switch.

Page 17

Add to Section 3.3.2
9. Binary:

3. Page 17

Correction to Secti.on
Labels need not begin

Numbers consisting of a string
of binary digits (0's and 1's)
followed by a B. (e.9., 1010118)

Constants

3.3.3 Labels
in column 1.

4. Page 17-18
Replace Section 3.3.5 Address Expressions with the following:
3. 3. 5 Address Expressions

An add.ress expression consists of a name or a' constant or an address expression + or an address
expression. An address expression uses the current
assigned address of a name or the 15-bit value of a
constant to form a 16-bit value which, after the
expression is evaluated, is truncated to the field
size required by the operator.

5. Page 18

Add to Section 3.3.7
Statements may begin

Statement Form
in column 1.

lticrosoft FORTRAN-8O Userr s l{anual
Addenda to: SECTION 3

The I'IACRO-8O Assembler

May, 1978 ' .

Page 2

5. Page 1 8

Add Section 3.3.8 Expression Evaluation
Operator precedence during expression evaluation is as
follows:

Parenthesized exPressions
HrGH, LO!{*, /r l4oD, sHL, sHR
+, (unary and binarY)
Relational Operators EQ, LT, LE' GT, GE, NE
Logical NOT
Logical AND
Logical OR, XOR

The Relational, Logical and HIGH/LOW operators must
be separated from their operands by at least one space.

Byte Isolation Operators

The byte isolation operators are as follows:

HIGH Isolate the high order 8 bits
of a 15-bit value

LOW Isolate the low order 8 bits
of a 16-bit value

Example:

IF HIGH VAI,UE EQ O

The above IF pseudo-op determines whether the high
order byte of VALUE is zero.

Relational Operators

-

The relational operators are as follows:

EQ Equal
NE Not equal
LT Less than
LE Less than or equal
GT GreAter than
GE Greater than or equal

Microsoft FORTRAN-80 Userr s Manua1

Addenda to: SECTION 3
The I'IACRO-80 Assembler

May, 1978

Page 3

These operators yield a true or false result. They are-
comnonly used in-conditional IF pseudo-ops. Thgy must be
separated from their operands by spaces. Example:

IF LABEL1 EQ LABEL2

The above pseudg-op tests the values of LABEL1 4nd LABEL]
for equafity. If Lhe result of the comparison is true'
the aJsembly language code following the IF pseudo-op is
assembled, otherwise the code is ignored.

7. Page 1 I
Add Section 3.3.8 Opcodes as Operands

8080 opcodes are valid one-byte operands. Note that only
the fiist byte is a valid operand. Fqr example:

I'TVI A, (JMP)
ADI (CPI)
MVI B, (ITNZ)
CPI (INX H)
ACI (LXI B)
!ffr c, (Mov ArB)

Errors will be generated if more than one byte is included
in the operand -- such as (cPI 5) , (LxI B,LABELI) or
(JI.{P LABEL2) .

Opcodes used as one-byte operands need not be encLosed in
parentheses.

8. Page '49

Add to Section 3.3.4 Define Word

Example:
DW IABI

Two-byte values are stored in memory in |ow order byte/high
order byte sequence. The ASCII code repiesentation for
character B is stored, then the character A is stored.

On the object code listing however, the printout for all
two-byte values is in high order byte/lorv order blzte'
sequence, for epsier readingo

Microsoft FORTRAN-80 User's l'lanual

Addenda to: SECTION 3
The l/tACRO-80 Assembler

May, 1978

Page 4

-

9. Page 22

Add section 3.4.16 Memory Legment Fpecification
It is possible to specify that.sections of a program be -
foaded in abs.olute, code relative or data relative segmentF
of memorY. fhe Pseudo-oPs ares

. !
-L:-1..!^ASEG For loading in an absolute

segment of memory

DSEG For loading in a data relative ' -
segment of memory

CSEG For loading in a code relative
segrment of memorY

one of the possible uses of these pseudo-ops-is.to specify
RAI{ and ROM segments of memory. The data relative segment
would be RAM, ind the code relative segment would be ROt{'

After an AsEG, CSEG or DSEG pseudo-op is encountef€d, all
following code is loaded in that area until a subsequent'
ASEG, CSEG or DSEG pseudo-op is encountered'

If none of these three pseudo-ops is specified, the de-
fault condition is to load everything code relative.

Additional ftexibility in relocating code is possible
through use of the oRG pseudo-op, which sets the value of
the. afpropriate Program counter' For example:

-
DSEG Sets the data relative Program

ORG 50 counter to a value 'of 50

Microsoft FORTRAN-80 Userrs Manual
Addenda to: SECIfON 3

The MACRO-8O Assembler
Mayr 1978

Page 5

NOTES

1. The Intel operands PAGE and INPAGE will
generate expression errors when used with
CSEG or DSEG pseudo-ops. These errors
are hrarnings; the assembler ignores the
operands,

2. In version 3.0 of the IvIACRO-80 Assembler,
references to a particular external symbol
may not be made in more than one memory
segment. For exampler €lD external symbol
EXT1 might be referenced in the code
relative segment, external symbols EXT3,
EXT4 might be referenced in the data
relative segment, but none could be ref-
erenced in more than one memory segment.

Refer to Section 2, Linking FORTRAN Progirams, to determine
how these segments are placed in specific areas of memory.

Microsof t FORTRAN-8O User's l4anual
Addenda to: SECTION 3

The l,lACRO-80 Assembler
May, 1978

Page 6

10. Page 24

Add Section 3.8 Cross Reference FacilitI -
The Cross Reference Facility is j-nvoked by typing CREFB0.
In order to generate a cross reference listing, the assernbler
must output a special listing file with embedded control -
characters. The I4ACRO-80 command string tells the assembler
to output this special listing file. An additional sr,vitch
has been introduded, /C, the cross reference sr,.ritch. when -the /C switch is encountered in a I{ACRO-8O command string,
the assembler opens a.CRF file instead of a.LST file.

Examples:

*=TEST,/C Assemble file TEST.MAC and
create object file TEST.REL
and cross reference file
TEST. CRF

-*T,U=TEST/C Assemble file TEST.MAC and
create object file T.REL
and cross reference file
U. CRF.

When the assenibler is finished, it is necessary to call the
cross reference facility by typing CREF8O. The comm.and string is:

*listing file=source file

The default extension for the source file is .CRF. The /t"
swiich is ignored, and any other switch wiII cause an error
message to be sent to the terminal. Possible command strings
are 3

*=TEST Examine file TEST.CRF and
generate a cross reference
listing file TEST.LST.

Examine file TEST.CRF and
generate a cross reference
Iisting file T.LST.

*T=TEST

Microsoft FORTRAII-8O Userrs Manual
Addenda to: SECTION 3

The I"IACRO-8O Assembler
May, 1978

Page 7

Cross reference listing files differ from ordinary listing
files in that:

1. Each source statement is numbered.

2. At the end of the listing, variable names apPear in
alphabetic opder along with the numbers of the lines
on which they are referenced or defined.

FORTMN.SO

Overv i ew
!

Hicrosoft's FORTRAN-80 package provides new capabi l ities for users
of 8080 and Z-80 based microcomputer systems. FORTRAN-8O is comparable
to FORTMN compilers on large mainf rames and minicomputers. AII of
ANSf Standard FORTRAN X3.9-1966 is included except the COMPLEX data
type. Therefore, users may take advantage of the many appl ications
programs already written in FORTRAN.

Versions of F0RTRAN-8O for the CP/M, lSlS-l l, DTC Microfi le and
HITS DOS floppy disk operating systems are available off the shelf.
Other versions will. be prepared based upon user demand.

Relocatable Code and Library Features

F0RTMN-80 is unique in that it provides a microprocessor FORTRAN

and assembly language development package that generates relocatable
object modules. This means that only the subroutines and system rou- -tines required to run F0RTRAN-8O programs are loaded before execution.
Subroutines can be placed in a system library so that users develop a

common set of subroutines that are used in their programs. Also, if A
only one module of a program is changed, it is necessary to re-compile
only that module.

The standard I ibrary of subroutines suppl ied with F0RTRAN-8O
i nc I udes:

AHAXO AMAXI

DMAXl
MI N1

S IGN
IDIM
DEXP

I ABS DABS
IDINT AHOD

MAXO

A}4INO AMINI

ABS
INT

DC0S

ATAN
DMOD

OUT

DMINl
IS IGN
SNGL

ALOG

FLOAT
DSIGN
DBLE
DLOG

DS IN
sQRT

A INT
MOD

HAX I
MINO
IFIX
DIM
EXP

ALOGl O

c0s
DSQRT

DATAN2
INP

DLOGIO SIN
TANH
DATAN ATAN2
PEEK POKE

The I ibrary also contains routines for 32'bi t and 64-bi t floating
point addition, subtraction, multipl ication, division, etc. These
routines are among the fastest avai lable for performing these functions
on the 8080.

Enhancements

The F0RTMN-80 compiler has a number of enhancements of the ANSI

Standard:

l.

2.

3.

4.

5.

6.

LOGICAL variables which can be used as integer
quantities in the range +127 to -128.

LOGICAL D0 Ioops for tighter, faster execution
of small valued integer loops.

t{ixed mode ari thmetic.

Hexadecimal constants.

Literats ana Holleriths allowed in expressions.

Logical operations on integer data. .AND., -0R.,
.HOf., .XOR. can be used for l6-bit or 8-bit
Boolean operations.

READ/WRITE End of File or Error Condition trans-
fer. END=n and ERR=n (where n is the statement
number) can be included in READ or WRITE statements
to transfer control to the specified statement on
detection of an error or end of file condition.

ENCODE/DEC0DE for FORI'|AT operations to memory.

7.

8.

FORTRAN-80 Compi I er Character i st ics

The FORTRAN-8Q compi ler can compi le several hundred statements per
minute in a single pass and needs less than 24K bytes of memory to com-
pile most programs. Any extra available memory will be used by the
compi ler for extended optimizat ions.

In spite of its small size, the FORTRAN-8O compiler oPtimizes the
geneiated object code in several ways:

1. Cormon subexpression el imination. Common subex-
pressions are evaluated once' and the value is
substituted in later occurrences of the subex-
press i on.

2. Peephole Optimization. Small sections of code are
replaced by more compact, faster code in special
cases. Example: l=l+1 uses an INX H instruction
instead of a DAD.

3. Constant folding. lnteger constant expressions
are evaluated at compile time.

4. Branch Optimizations. The number of conditional
jumps in arithmetic and logical lFs is minimized.

Long descriptive error messages are another feature of the com-
piler. For instancei ,

? Statement unrecognizable

is printed if the compiler scans a statement that is not an assignment
or other FORTMN statement. The last twenty characters scanned before
the error is dectected are also printed.

The compi ler generates a ful ly syrnbol ic I isting of the machine
language being generated. At the end of the listing, the compiler pro-
duces an error summary and tables showing the addresses assigned to
labels, variables and constants.

Assembler, Linker and Library Manager

A relocating assembler (mgCRO-80), relocating I inking loader
(ltHf-80) and a library manager (t-lg-gO) are included in the FORTRAN-80
package.

The relocating assembler is compatible with INTEL's assembler,
except.HACRO capability is not provided. The assembler uses approxi-
mately 7K bytes of memory.

LINK-80, the relocating loader, resolves internal and external
references between the object modules loaded. LINK-80 also performs
library searches for system subroutines and generates a load map of
memory showing the locations of the main program, subroutines and
C0|1M0N areas. LINK-80 requires approximately 4f bytes of memory.

LIB-80, the I ibrary manager, al lows the user to customize I ibraries
of object modules. LIB-80 can be used to insert, F€place or delete ob-
ject modules within a library, or create a new library from scratch.
LIB-80 commands can also list the modules in the library and the symbol
definitions they contain. LIB-80 requi res approximately 4K of memory
and uses the rest of memory as a buffer for its editing operations.

Custom l/O Drivers

Users may write non-standard l/0 drivers for each Logical Unit
Number, making the task of interfacing non-standard devices to FgRTMN
programs a straightforward one.

Future Extensions

luring the,first quarter of 1978 MACRQ capabitity will be added

to the assembler, and LINK-80 will be modified to handle overlays'

Support '
"

FORTMN-80 users wil I receive quick turnaround on bug f ixes, and

new versions of FORTMN-80 will be documented and distributed in an

expedient manner.

Other Products

,soo,
nlil?;'l:

:'.;*el;;""il'8ffi 3,' :l: i?il?i'i'533i"13i, :::' l'330?io
tlon, t{i..oroft has development software that runs on the DEC-I0 for
all of these microProcessors.

Pricing

Single CoPY Prices:

FORTMN-8o system (including documentation) S500.00

FORTRAN-8o, MACRO-8o, LINK-80, LIB-80 manuals
and system users guide S 20'00

OEl'l and dealer agreements are available upon request'

For rpre i nformat ion contact:

Steve Wood
Genera I l,lanager
il i crosoft
300 San Hateo NE, Suite 819
Al buquerque, Nl.l 8Z t Og

505-262-1486

MICROSOFT 8O8A FORTRAN-IV

Ver sion 2.2

Copyright I97i (C) Dy Microsoft

I

/^.

MICROSOFT 8g8g FORTRAN-IV Page 2

Table of Contents

Section

1 Introduction

2 Fortran Program Form
2.I Fortran Character Set

2.1.1 Letters
2.I.2 Digits
2.I.3 Alphanumerics

" 2.I.4 Special Characters

2.2 FORTRAN Line Format
2.3 Statements

. 3 Data Representation,/Storage Format

3.1 Data names and tlpes

3.1.1 Names
3.I.2 Types

3.2 Constants
3.3 Variables
3.4 Arrays and Array Elements
3.5 Subscripts
3.5 Data Storage Allocation

4 FORTRAN Expressions

4.1 Arithmetic Expressions
4.2 Expression Evaluation
4.3 Logical Expressions

4.3.1 Relational Expressions
4.3. 2 Logical Operators

4.4 Hollerith, Literal, and Hexadecimal Constants
in Expressions

5 Replacement Statements

6 Specification Statements

6.1 Specification Statements
6.2 Array Declarators
5.3 Type Statements
6.4 EXTERNAL Statements
6.5 DIMENSIoN Statements
6.6 COI|MON Statements
6.7 EQUIVALENCE Statements
6.8 DATA Initialization Statement

I.,IICROSOFT 8089 f'ORTRAN-IV

' 7 FORTRAN Control Statements
1.L GOTO Statements

?.1.1 Unconditional GOTO

7.1. 2 ConPuted GOTO
7.1. 3 Assigned GOTO

Page 3

-7 .2 ASSIGN Statement
i.3 IF Statement

i.3.1 Ar'ithmetic IF
i .3.2 Log ical IF

i.4 DO Statement
i.5 CONTINUE Statement
i.6 STOP Statement
7 .-/ PAUSE Statement
7.8 CALL Statement
7.9 RETURN Statement
7.I0 END Statement

I InPut,/OutPut

8 ' 1 [:iTi";:,*:t?15.18i"
8.I.2 Formatted WRITE

8 '2 unformatted READ'/wRrrE
8.3 AuxiIiarY I/O Statements
8.4 ENCODE/DECODE
8.5 Input/Output List Specifications

8. 5. I List Item TYPes
8:4.2 Special Notes on List Specifications

8. 5 FORI'IAT Statements
8.6.1 Field Descr iPtors
8.6.2 Numeric Conversions
8.6.3 HolIerith Conversions
8.5.4 Logical Conversion
8.5.5 X DescriPtor
8.5.5 P Descr iPtor
g.O.Z Special bontrol Features of FORMAT Statements

8.6.?.1 RePeat SPecifications
8.6.7 .2 FieId SeParators

8.5.8 FORI"IAI Control, LisE Specifications, and
Record Demarcation -

8.6.9 FORMAT Carriage Control
E.6.10 FORMAT Specifications in Arrays

9 Functions and Subprograms

9. l. PROGRAM Statement
9.2 Statement Functions
9.3 Library Functions

,^.

MICROSOFT 8O8g FORTRAN-IV Page 4

9.4 Function Subprograms
9.5 Construction of Function Subprograms
9.5 Referencing a Function Subprogram
9.7 Subroutine Subprograms
9.8 Construction of Subroutine Subprograms
9.9 Referencing a Subroutine Subprogram
9.Lg Return From Function and Subroutine Subprograms
9.tl Processing Arrays in Subprograms
9.L2 BLOCK DATA Subroutine

APPENDIX A- Language Extensions and Restrictions
APPENDIX B- I/O Interface
APPENDIX C- Subprogram Linkages
APPENDIX D- ASCII Character Codes
APPENDIX E- DisK File Access

I'TICROSOFT 8g8A FORTRAN-IV Page 5

SECTION 1

INTRODUCTION

FORTRAN is a universal, problem oriented programming
language designed to simplify the preparation and check-out
of computer programs. The name of the language FORTRAN
is an acronym for FORmula TRANslator

The syntactical rules for using the Ianguage are
rigorous and require the programmer to define-rurry the
character istics of a problem in a ser ies of prec ise
statements. These statements, called the source program,
are translated by a system program called the FORTRANprocessor into an o.biect program in the machine ranguage ofthe computer on w.hich the progrEm is to be executed.

This manual defines the FORTRAN source ranguage for the808a and z-80 microcomputers. This ranguage- inirudes the
American National stanoard FORTRAN ranguaqe as described inANSI document X3.9-1966, atrproved on March i, 19G6, plus a
number of language extensions and some restrictions. Theseranguage extensions and restrictions are described in thetext of this document and are listed in Appendix A.

NOTE

This FORTRAN differs from the
Standard in that it does not
include the COMPLEX data type.

Exampres are included throughout the manuar toillustrate the construction and use of the ranguageerements. The programmer should be familiar with- atraspects of the language to take full advantage of itscapabil ities.
section 2 describes the form and components of an g0g0

FORTRAN source program. sections 3 and 4 define data tvpes
?nd their expressional relationships. sections 5 througir- 9describe the proper construction and usage of the vaiiousstatement classes

UICROSOFT 8g8g FORTRAN-IV Page 6

SECTION 2

FORTRAN PROGRAM FORM

Sggg FORTRAN source Programs consist of one program
unit called the t'lain proqram and any number of program units
c.alled gubproqranr=E] A-Tscussion of subprogr:am types and
methodsffingandusingthemisinSection9ofthis
manual.

programs and program units are constructed of an
ordered set of statements which Precisely describe
procedures for solvinq problens and which also define
information to be used b-y the FORTRAN Processor during
compilation of the object program. Each statement is
wrilten using the FORTRAN character set and following a
prescribed line format.

2.L FORTRAN CHARACTER SET

2. 1.1

To simplify reference and explanation, the FORTRAN
character set is divided into four subsets and a
name is given to each.

LETTERS

ArB, C, D, E rE ,GrH, I rJ , K, Lrl,trNrOrPrQ, Rr S rTr U

vr l{, xrY ,z , $

NOTE

No distinction is made between uPPer and
lower case letters. However, for clarity
and legibility, exclusive use of uPPer case
letters is recommended.

2.L.2 DIGITS

0 rLr2r3r4r5r617 rg19

. NOTE

Strings of digits representing numericguantities are normally interpreted asdecimal numbers. However, in certain

MICROSOFT 8680 FORTRAN-IV

2.L.3 ALPHANUMERICS

A sub-set of characters made up of
all digits.

2.1.4 SPECIAL CHARACTERS

statements, the interpretation is in the
Hexadecimal number system in which case the
letters A, B, C, D, E, F may also be used
as Hexadecimal digits. Hexadecimal usage
is defined in the descriptions of
statements in which such notation is
allowed.

Page 7

all letters and

;
*

(

)
,

BIank
Equality Sign
Plus Sign
Minus Sign
Aster isk
Sl ash
Left Parenthesis
Right Parenthesis
Comma
Decimal Point

NOTES:

l.

2.

FORfRAN program Iines consist of B0 characterpositions or columns, numbered 1 through 80.
They are divided into four fields.
The following special characters are classified
as Arithmetic Operators and are significant in
the unambiguous statement of ar ithmetic
expressions.

+ Addition or positive Value
Subtraction or Negative VAlue* llultipl ication

/ Division** Exponentiation

The_.other special characters have specificapplication in the syntactical expression ofthe FORTRAN language and in the construction of
FORTRAN statements.

3.

I.TICROSOFT SOBO FORTRAN-IV PA9C 8

;. Any printable character nay aPPear in a
Eollerith or Literal field.

2.2 FORTRAN LINE FORMAT

The sample FORTRAN coding form (Figure 2.Ll shows
the fornat of FORTRAN program lines. The lines of
the form' consist of 80 character positions or
columns, numbered 1 through 8A, and are divided
into four fields.

, 1. Statement Label (or Number) field- Columns I
through 5 (See definition of statement labels).

2. Continuation character field-
Column 6

3. Statenent field-
Columns 7 through 72

4. Indentification field-
Columns 73 through 80

The ldentification field is available for any
purpose the FORTRAN progranmer may desire and is
ignored by the FORTRAN processor.

The lines of a FORTRAN statement, are placed in

:ii:3:"'i" :3il"i1""'?"|::T":;::,";:?iiit?"::,':l;
column formats are:

1. Comment line -- used for source program
annotation at the convenience of the
Pr09rammer.

1. Colunn I contains the letter C.

2. Columns 2 - 72 are used in any desired
fornat to express the comment or they rnay
be left blank. .

3. A comment line may be followed only by an
initial I ine r dD END I ine r or another
comment 1ine.

4. Comment lines have no effect on the object
program and are ignored by the FORTRANprocessor except for display purposes inthe listing of the program.

Exanple:

5

-iu
z
i

mImz

l{
ut

=

r:
c)
{
z

@
rt

T|ICROSOFT Sggg FORTRAN-IV Page 9

ARE INDICATED BY THE
IN COLUMN 1.
LINES

c
c
c

COIIMENT LINES
CHARACTER C

THESE ARE COMMENT

2. END line -- the Last line of a program unit.

1. Columns 1-5 may contain a statement label.

2. Co1umn 6 must contain a zero or blank.

3. Columns 7-72 contain one of the characters
E' N or D' in that order, Preceded bY,
separated by or followed by blank
characters.

4. Each FORTRAN prograln unit must have an END
.line as its last line to inforn the
Processor that it is at the Physical end of
the program unit.

5. An END line may follow any othe.r tyPe line.
Example:

END

3. Initial Line -- the first or only line of each
statement.

1. Columns 1-5 may contain a statement 1abel
to ldentify the statement.

2. Column 6 nust contain a zero or blank.

3. Columns i-72 contain all or part of the
statement.

An initial line may begin
the statement field.

anywhere within

Example:

C TTIE STATE}IENT BELOW CONSISTS
C OF AN INITIAL LINE
c

[= . 5*SQRT (3-2. *g;

4.

continuation Line -- used when additional linesof. coding are required to complete a statementoriginating with jn initial fine

4.

I{ICROSOET
.8089

FORTRAN-IV Page lg

l. Colunns 1-5 are ignored, unless Column I
contains a C.

2. If Column I contains a C, it is a comment
l ine.

3. Colunn 6 must contain a chiracter cther
than zero or blank.

4. Colunns 7-72 contain the continuation of
the statement.

5. There may be as many continuation Iines as
needed to complete the statement.

' Example:.

C 8HE STATE!{ENTS BELOW ARE AN INITIAL LINE
C AND 2 CONTINUATION TINES
c

63 BETA (1,2) =1 A6BAR**7- (BETA (2,21-A5BAR*59 ^
2 +sQnr (BETA(2,1)))

A statenent label may be placed in columns 1-5 of a
FORTRAN statement initial line and is used for
reference purposes in other statements.

The following considerations govern the use of
statenent labels:
1. The labe1 is an integer fron I to 99999.

2. The numerlc value of the label, leading zeros
and blanks are not significant.

3. A label must be unique wi'thln a program unit.
4. A ldbel on a continuation llne is ignored by

the FORTRAN Processor.

UICROSOFT 8g8O FORTRAN-IV

ExamPIe:

C EXAI,TPLES OF STATEMENT LABELS
c

I,
lAL

99999
763

2.3 STATEI4ENTS

Page 11

Indfvidual statements deal with specific aspects of
a procedure described in a program unit and are
classified as either executable or non-executable.

Executable statements specify actions and cause the
FORTRAN Processor to generate object program
instructions. There are three types of exqcutable
statements:

1. Replacement statements.

2. Control statements.

3. Input,/Output statements.

Non-executable statements describe to the processor
the nature and arrangement of data and provide
information about input/output formats and data
initialization to the object progran during program
loading and execution. There are five types of
non-executable statements :

Specification statements.

DATA Initialization statements.

FORIr{AT statements.

4. FUNCTION defining statements.

5. Subprogram statem.ents.

The proper usage and construction of the varioustypes of statements are described in sections 5through 9.

I.

2.

3.

The FORTRAN
identifying

SECTION

DATA REPRES.ENTATION

Language prescr ibes
data used in FORTRAN

3

/ STORAGE FORI*{AT

a definitive methoC for
programs by name and tvPe.

3.1

3.1.1

3.1. 2

I.
2.

3.

DATA NAI,IES TYPESAND

NAMES

Constant - An explicitly stated datum.

Variable A symbolir:ally identified datum.

Arrai - An ordered sist of data in 1, 2 ot 3

dimensions.

Array Element C'ne':nember of the set of data
of an array.

TYPES

Integer Precise rePresentation of integral
numbers (positive, negative or zero) having
precision to 5 digits in the range -32168 to +32767
inclusive (-2**l 5 to 2**I 5-f) .

ReaI -- Approximations of real numbers (positive,
negative or zero) represented in computer storage
in 4-byt.e, f loating-point fot:m. Real data are
preclse to 7+ sigr ificant digits and their
magnitude may lie betwer;n the aPProximate limits of
l0**-38 and I0**38 (z*tc-Izi and 2**1271 .

Double Precision -- Approximations of real numbers
(positiver D€gative or zero) represented in
computer storage in B-byte, floating-point forq.
Oouble Precision data are precise to 16+
significant digits in the same magnitude range as
real data.

Logical -- One byte representations of the truth
values "TRUE" or "FALSE" with "FALSE defined to
have an internal representation of zeto. The
constant .TRUE. has the value -1, however any
non-zero value will be treated as .TRUE. in a
Logical IF statement. In addition, LogicaI types
may be used as one byte signed integers in the
range -I28 to +L21, inclusive.

4.

1.

2.

3.

4.

MICROSOFT 8689 FORTRAN-IV Page 13

3.2

Hollerith -- A string of any number of characters
from the comDuterrs character set. Atl characters
including Effifi'EAaE signif icant. Hollerith data
require one byte for storage of each character in
the str ing.

CONSTANTS

FORTRAN constants are identi.fied explicitty by
stating their actual value. The plus (+) character
need not precede positive valued constants.

Formats for writing constants are shown in Table
3-1.

5.

MrcRosoFT 8480

rYPE

INTEGER

REAL

FORTRAN-IV

Iable 3-1. CONSTANT FORMATS

FORMATS AND RULES OF USE

I to 5 oecimal digits
interpreted as a deci-
ma1 number.

A preceding plus (+) or
minus (-) sign is op-
tional.
No decinal point (.) or
conma (,) is allowed.

Value range z -32768
through +32767 (. i.e. ,
-2t *15 through 2*r,L5-1) .

A decimal number with
precision to 7 digits
and represented' in one
of the following forms:

€1. * Or -.f + Or -i.fb. * or -i.g+ or -e+ or -. fE+ or -e+ or -i.fE+ or -e

where i, f, and e are
each strings represent-
ing integer, fraction,
and exponent respective-
ly.
Plus (+) and minus (-)
characters are optional.
In the form shown in 1 b
above, if r represents anyof the forms preceding
Ff or -e (i.e. r tE* or -€) ,the value of the constantis interpreted as r times10**e, where -38(=e(=3g.

If the constant preceding
E+ or -e contalns moresignificant digits than

Page 14

1.

2.

EXAMPLES

-7 63
I
+09672

-32768
+327 67

345.
-.345578
+345.678
+.383
-7 384

3.

4.

1.

2.

3.

4.

I,IICROSOFT 8O8g FORTRAN-IV

DOUBLE

tbe precision for real
data allows, truncation
occurs, and onlY the
most significant diqits
in the range will be reP-
resented.

A decimal number with +345.678

Page 15

PRECISION Precision to 16 digits. All +.3D3
formats and rules are ldenti- -73D4
cal to those for REAL con-
stants, except D is used in
place of E. Note that a real
congtant 1s assumed single Pre-
cision unless it contains aop" exponent.

LOGICAT .TRUE. generates a non-zero .TRUE.
byte (hexadecirnal FF) and .FALSE.
.FALSE. generates a bYte in
whlch all bits are g.

If logical values are
used as one-byte integers' the
rules for use are the same as
for type INTEGER, except that
the range allowed is -128 to
+L27, inclusive.

LITEPAL In the literal formr dDY
number of characters maY be
enclosed by single guotation
narke. The form is as follows:rXlX2X3...Xnl

rhere each xl ls any charac-
ter other than '. Two
quotatlon marks in succession
may be used to rePresent the
quotatlon mark character
wlthin the string, i.e.,
if x2 is to be the quotation
mark character, the string
appears as the following:

'xl I rx3...xnt

HEXADECIMAL 1. The letter Z or X Z'Lz'
followed by a single quote,
up to 4 hexadecimal X rABlF I

digits (g-9 and A-F) and a ZTFFFF'

MICROSOFT 8g8A FORTRAN-IV Page 15

single guote is recognized
-as a hexadecimal value. X'lF I

2. A hexadecimal constant is
right justified in its storage
value.

I
IJ

ITIICROSOFT 8980 !'ORTRAN-IV Page L7

3.3 YARTABLES

Variable data are identified in FORTRAN statements
by symbolic names. The names are unique strings of
from I to 6 alphanumeric characters of which the
first is a letter.

NOTE

System variable names and r unt ime
subprogram names are distinguished from
other variable names in that they begin
with the dollar sign character ($). It is
therefore strongly recommended that in
order to avoid conflicts, symbolic names in
FORTRAN source progLams begin with some
letter other than "$".

Examples:

15, TBAR, 823, ARRAY, XFM79, MAX, Al$C

Variable data are classified into four tlpes:
INTEGER, REAI, DOUBLE PRECISION and LOGICAL. The
specification of type is accomplished in one of the
following ways 3

,

I. Inplicit typing in which the first letter ofthe symbolic name specifies Integer or Realtype. Unless explicitly typed (2., below),synbolic names beginning with !, J, K, L, M or
N represent Integer variables, and symbolic
names beginning with letters other than I, J,K, Lt !1 oi N represent ReaI variables.
Inteqer

ITEM
J1
MODE
Kl 23
N2

Var iables

2. Variables may be typed explicitly. That is,they may be given a particular type withoutreference to the first letters of their names.Variables may be explicitly typed as INTEGER,REAL, DOUBLE PRECISION or LOGICAL. Thespecific statements used in explicitly typingdatq are described in Section 6.

variable data receive their numeric value assignments duringprogram execution or r initially, in a DATA statement(Section 6).

MICROSOI'T 8g8A FORTRAN-IV Page 18

Real Var iables

BETA
H2
ZAP
A!IAT
XID

or Literal data may be assigned to any typeSub-paragraph 3. G contains a discussion -6t
data storage.

ARRAYS AND ARRAY ELEMENTS

SUBSCRIPTS

-

A subscript

IioIler ith
var iab1e.
Holler ith

3.4

An array is an ordered set of data qharacterized bythe_ pToperty of dimension,. An array may have f, 2or 3 dimensions anEFffintified ani type,J by asymbolic name in the same manner as a variinreexcept that an array name must.be so decrared by an"array declarator. " Complete discussions of thearray declarators appear in section 6 0f thismanual. An array declarator also indicates thedimensionality and size of the array. An arrayelement is one member of the data set that mar6ffian array. Reference to an array element in ;
FORTRAN statement is made by appending a subscriptto the array name. The term- array erement i"synonymous with the term subscripted variable usedin sone FORTRAN texts and reference manuals.

An initial value may be assigned to any arrayelement by a DATA statement or its valu6 *;y-;;der.i.ved and def ined during .program execution.

3.5

foI lows an array name to uniguelv

UICROSOFT 8g8A FORTRAN-IV Page 19

identify an array element. In use, a subscript in
a FORTRAN statement takes on the same
representational meaning as a subscript in familiar
algebraic notation.

Rules that govern the use of
follows:

subscripts are as

1. A subscript contains l, 2 or 3 subscript
expressions (see 4 below) enclosed in
parentheses.

2. If there are two or three subscript expressions
within the parentheses' they must be seParated
by commas.

3. The,number of subscript expressions must be the
same as the specified dimensionality of the
Array Declarator except in
statements (Section 6).

4. A subscript expression is written
fotlowing forms:

A(I,J,K) r (2sl

EQUIVALENCE

in one of the

5.

K C*V v-Kv c*v+K c*v-K
v+K

where C and K are integer constants and V is an
integer variable name (see Section 4 for a
discussion of expression evaluation) .

Subscripts themselves may not be subscripted,
Examples:

N,(2*J-3,71 c (L-2) Y(r)

DATA STORAGE ALLOCATION

Allocat.ion of storage for FORTRAN data is made in
numbers of storaqe units. A storage unit is the
memory space reguired to store one real data value
(4 bytes) .

Table 3-2 defines the word formats of the three
data types.

llexadecinal data may be associated (via a DATAstatement) with any type data. Its storagearlocation is the same as the associated datum

Hollerith or literal data may be associated withany data type by use of DATA initiarizaion

3.6

},IICROSOFT 8A8O FORTRAN-IV Page 2g

statements (Section 6).

Up to eight Hollerith characters may be associated
with Doubl-e Precision type stordg€, up to four with
ReaI, up to two with Integer and one with Logical
type storage.

TYPE

INTEGER

MICROSOFT 8g8O FORTRAN-IV Page 2L

TABLE 3-2. STORAGE ALLOCATION BY DATA TYPES

LOGICAL

ALTOCATION

2 byt,esl I/2 storage unit

S Binary Value

Negative numbers are the 2's complement of
positive representations.

I byte/ l/4 storage unit

Zero (fa1se) or non-zero (true)

A non-zero valued byte indicates true (the
logical constant .TRUE. is represented by
the hexadecimal value FF). A zero valued
byte indicates false.

When used as an arithrnetic value, a Logical
datun is treated as an Integer in the range
-L28 to +L27.

4 bytesr/ 1 storage unitREAL

Character istic
!{ant i ssa

S Mantissa
(cont inued)

The first byte is the character istic
expressed in excess 2A0 (octal) notation;
i.e., a value of 2gO (octal) corresponds to a
binary exponent of q. Values less than 2A0
(octaI) correspond to negative exponents, and
values greater than 2Ag correspond to
positive exponents. By definition, if the
character istic is zeEo, the entire number is
zero.

The next three bytes constitute the marrtissa.
The mantissa is always normalized such that
the high order bit is oD€r eliminating the
need to actually save that bit. The high bit
is used instead to indicate the sign of the
number. A one indicates a negative number,
and zero indicates a positive number. Themantissa is assumed to be a binary fraction
whose binary point is to the lefl of themantissa.

i

I.{ICROSOFT 868A FORTRAN-IV

DOUBLE
PRECISION

8 bytes/ 2 storage units

The internal form of Double Precision data is
identical with that of Real data except
Double Precision uses 4 extra bytes for the
matissa.

Page 22

I,IICROSOFT 8g8g FORTRAT{-IV Page 23

SECTION 4

FORTRAN EXPRESSIONS

A FORTRAN exPression is composed of a single operand or a

string of operands connected by operators. Two expression
types --Arithmetic and Logical-- are provided by FCRTRAN.

Tha operands, oPerators and rules of use for both types are
described in the following Paragraphs.

4.1 ARITjI.{ETrC EXPRESSTONS

The following rules define
arithmetic expression forms:

all pernissible

1. A constantr v€l!iable name, array element
reference or FUNcrroN reference (Section 9)
standing alone is an exPression.

2.

3.

4.

If E is an expression whose first character is
not an operator, then +E and -E are called
signed expressions.

Examples

-s +JoBNO -2L7 +L7.25 -SQRT (A+B)

Examples:

S (I) JOBNO 2L7

If E is an expression,
guantity resulting when E

Examples:

L7 .26 SQRT (A+B)

then (E) means the
is evaluated.

(-A) - (JOBNO) - (x+l) (A-SQRT (A+B))

If E is an unsigned expression and F is any
expression, then: FfE, F-8, F*8, ?/E and F**E
are all expressions.

Examples:

- (B (r,J)+SQRT (A+B (K, r)))
I.7E_Z** (X+5.0)

- (B(I+3,3*J+5)+A)

i-

il
;l

;

,I
rl

I

I

MICROSOFT 8O8g FORTRAN-IV Page 24

An evaluated expression may be Integer, Real,
Double Precision, or LogicaI. The type is
determined by the data types of the el-ements of
the expression. If the elements of the
expression are not all of the same type, the
type of the expression is determined by the
element having the highest type. The type
hierarchy (highest to lowest) is as follows:
DOUBLE PRECISION, REAL, INTEGER, LOGICAL.

6. Expressions may contain nested parenthesized
elements as in the followinq:

A*(z-((Y+x)/Tl)*:J

where Y+X is the innermost element , (y+X) /T is
the next innermost, Z- ((y+X) /T) the next. In
such expressions, care should be taken to see
that the number of left parentheses and the
number of right parentheses are equa1.

4.2 EXPRESSION EVALUATION

Arithmetic expressions are evaluated accordinq
the following rules:

l. Parenthesized expression elements are evaluated
first. If parenthesized elements are nested,
the innermost elements are evaluated, then the
next innermost until the entire expression has
been evaluated

2. Within parentheses and,/or wherever parentheses
do not govern the order or evaluation, the
hierarchy of operations in order of precedence
is as follows:

FUNCTION evaluation
Exponentiation
Multiplication and Division
Addition and Subtraction

Example:

The expression

5.

i-n

ct.
b.
c.
d.

A*(z-((y+n)/rl)
is evaluated in the

**J+VAL

following seguence:

l-frcRosoFT 8080 FORTRAN-IV

Y+R = eI
(el.l /T = e2
Z-e2 = e3
e3**J = e4
A*e4 = e5
eS+VAt = e6

3. Wherever operations
involved, evaluation
r ight .

Examples:

Expression

. w*x/yr,z
B**Z-4. *A*C
x-Y-z
x/Y/z
-x**3

Page 25

of egual hierarchy are
proceeds fron left to

Evaluated as

(W*X) /Yt'Z
(B**Z) - ((4. *A) *C)
(x-Y) -z
(x/vt /z
- (x**3)

allowed. It4. The expression X**Y**Z is not
should be written as follows:

4.3

(X*!tYl**Z or x** (Y**z)

5. Use of an array elernent reference reguires the
evaluation of its subscr ipt . Subscr ipt
expressions are evaluated under the same rules
as other expressions.

LOGICAL EXPRESSIONS

A Logical Expression may be any of the following:

A single Logical Constant (i.e. , .TRUE. or
.FALSE.) , a Logical variable, Logical A-ray
Element or Logical PUNCTION reference (see
FUNCTION, Section

-9).
Two ar ithmetic expressions separated by a
relational E)erator (i.e.r d relational
expression).

Logical opgrators acting upon logicalconstants, logical variables, Iogical arrayelements, logical FtNCTIONS, relationai
expressions or other logical expressions.

1

l.

2.

l 3.

MICROSOFT 8A8A FORTRAN-IV Page 26

The valne of a loqical expression is always either
.TRUE. oT.FALSE.

4 . 3, 1 REi,A'rro\jlt EXPBIBSS TONS

The generar form of a relational expression rs as
fo1 lows :

elre2

where el and e2 are arithmetic expressions and r isa rerationar operator. The six rerational
oper atoiEiE-as f6lf6ws :

. LT. Less Than

.LE- Less than or equal to

. EO. Egual to

.NE. Not egual to

.GT. Greater than

.GE. Greater than or egual to
The varue of the relationar expression is .TRUE.if the condition def ined by lrre operator is met.Otherwise, the value is .FALSE.

grsPlssi.

A. EQ. E
(A:k*J) .Cr. (zep* (RHo*TAU_ALPH))

4.3. 2 LOGICAL OPERATORS

Table 4-1 lists the logical operations. u and vdenote logical expressions.

MrcRosoFT 8g8g

.NOT. U

U. AND. V

LI.OR.V

FORTRAN-IV

TabIe 4-1.

Page 2i

Logical Operations

The value of this expression is the
logical complement cf U (i.e. , I
bits become 0 and 0 bits become 1).

The value of this expression is the
logical product of U and V (i.e. ,
there is a I bit in the result onJ-y
where the corresponding bits in both
U and V are 1.

The value of this expression is the
logical sum of U and V (i.e., there
is a 1 in the result if the
corresponding bit in U or V is I or
if the corresponding bits in bcth U

and V are I.

The value of this expression is the
exclusive OR of U and V (i.e., there
is a one in the resul-t if the
corresponding bits in U and V are 1
and 0 or 0 and 1 respectively.

U.XOR.V

Examples:

If U = 0lIAlIAg and V = II00L0LI, then

.NOT.U = IAAIIAII
u.Al.rD.v - gL0alLga
U.OR.! = 11101101
U.XOR.[= IL10A16I

MICROSOT'T SOBO FORTRAN-IV Page 28

The following are additional considerations fot:
construction of Logical expressions:

l. Any Log ical €xpression may be encloged in
parentheses. However, a Logical expression to
which Lhe.NOT. operator is aoplied rnust be
enclosed in parentheses if it contains two or
more elements.

2. In the hierarchy of operations, Fdrentheses may
be used to spec ify the order ing of the
expression evaluation. t'[ithin parentheses, and
where parentheses do not dictate evaluation
order, the order is understood to be as
folIows:

a. FUNCTION Reference
b. Exponentiation (**)
c. Multipl ication and Div ision (* and /')
d. Addition and Subtraction (+ and -)
e. .LT., .LE., .8Q., .NE., .GT., .GE.f. .Nor.
g. .AND.
h. .oR., .xoR

Examples:

The expression

x .AND. Y .OR. B(3,2) .cT. Z

is evaluated as

el = B(3,2).Ct.Z
e2=X.AND.Y
e3 = e2 .OR. el

The expression

x.AND. (y.OR. B(3,2) .cT. Zl

is evaluated as

el = B(3,2) .cT. Z

e2 =Y.OR. el
e3 =)(.AND. e2

3. It is invalid to have two contiguous logicaloperators except when the seqond operator is
.NOT.

That is,

.AND..NOT.

IIICROSOFT 8O86 FORTRAN-IV

and

Page 29

may be used

constan ts
s ta temen t s
or up to

r.ri th Doubl e

.oR. . NOT.

are permitted.

Examole:

A.AND..NOT.B

A.AND..OR.B

1S permitted

not permitted

AND IIEXADEC-Irvtll COI'TSTANTS IN

ls

4.4 lgrjlElllg, LTTERAL,
EXPRESS IOh]S

Hol1eriilr, Literal, and Hexadecimal constants areallowed in expressions in ptace of Integerconstants. These special constants always evaluituto air rnteger varue and are therefore rimited to alength of two bytes. The only
"*""piion" ro thisare:

Long HoIIer ith or Literal const,antsas subprogram parameters.

Holler ith, Literal, or Hexadec imalmay be up to four bytes long in DATAwhen assoc iateo with Real
"i, i"Ui""^,gigh! .bytes long when associatedPrecision var iables.

1.

2.

I.,lICROSOF'.I] 8g Bg TORTRAN-IV Page 3g

SECTIOI{ 5

itEPLAC EM Ei.]T S'IATT]I'1 ENTS

Iienlaccncnt stat-emcnts; defi;re conpLll:atiot-ts ancr arc tr::cil
sil,rilarlr' {,o equations in norlral nrathcrn:rt.i-ca1 notal,ion.
They arc of. the following forin:

v=e

where v is any var iabLe or
exprcssion.

arrav elcnient and o 1q tn

FORTRAN semantics defjnes tlie ec{ua1it.y sign (=) as meaninq
!g Fc I_*lgg-e1! .lfy rather than thc nornra:l j s cctt jva.! eiri- t-o.
nius, tF--5fr?c:i:- prog ran instr uctions ri;jrrr:iati,i---iJi *--.:,

replacement starterncnt rvi11, vrhen c>iccutcrl, eValrrarc: t-irc
expression on the right of the cgualitl' sign €in(l nlace 1-hat
resul,t in the storaq;e spaee allocateci to t'i-;c virriab-le: or
array eLemenl- on the left of the eouality sign.

The following conditions apply to repl acen.ent s'cat.e ments:

Both v and the eguality sign must appear on the
same line. This holos even vrhen the sLatement is
part of a logical IF stai:ement (section i).

Example:

C IN A REPLACEMENT STATEI'lEillT TilE r=l
C MUST I3E IhI THE INITIAL LI}JE.

A(5,3) =
I B (7 ,2) + SrN (C)

The line containing v= must be the initial line of
the statement unless the statement is r;art of a
Iogical IF staternent. In that case the v= must
occur no later than the end of the first line after
the end of the IF.

If the data types of the variable, v, and the
expression, e, are different, then the value
determined by the expression will be converted, if
possible, to conform to the Lyping of the variable.
Table 5-1 shows whicir tyoe expression.s may beequated to wh j ch typr: of var iable. y ind icaies a
val ic replacement and N inci icate s an inval id
replacement. Fcotnotes
consider ations.

1.

2.

to Y indicate conversion

MICROSOFT 8O8A

Var iable
Type s

fnteger
Real
Log ical
Double

FORTRAN-IV

Table 5-1. Replacement By Type

Expression Types (e)

Page 31

tt".

1.'
!:

!:

;l

i

)

In teger

Y
Yc
Yd
Yc

Re al Log ic aI

Ya Yb
YYC
YaY
Yyc

Double

Ya
Ye
Ya
Y

a. The Real expression value is convertedtruncated if necessary to conform tofnteger data.
to fnteger,
the range of

b. The sign is extended through the second byte.c. The variable is_assigned th; neir-ippro*imation of
!h" rnteger". value of the expression. tt-v^''rtcrLrvrr
cl' The variable is assigned the truncated value of t'ernteger expression (lne 1ow-order byte is used,regardless of sign) .e' The variable is assigned the rounoed value of theReal expression.

MICROSOFT 8g8g FORTRAN-IV Page 32

SECTION 6

SPEC IF ICATION STATEI,IENTS

Specj fication statements are non-executable, non-qenerati ve
statenents rvhich ctefine data types of variabl-es anci arravs,
spccify array dimensionality and size, allocate oata stor:aqe
o r otherwise supply deterrninative inf ormation to the t'Oi{'iF.AN
processcr. DATA intial ization stat.ements are
non-executable, but generate object program oata and
establish initial val-ues for variable data.

6.1 SPEC rF TCATIOII STATEI,IIiNTS

There are six kinds of
They are as follows:

specification statements.

Type, EXTERNAL, and DIi,IENSIOI.I statement.s
COI'Ii4ON staternents
EQUIVALENCE statements
DATA initialization statements

A11 specification statements are grouped at the
beginning of a program unit and must be ordered as
they appear above. Specification statements may be
preceded only by a FUNCTION, SUBROUTfNE, PROGRAi'1 or
BLOCK DATA statement, AI1 specification staternents
must precede statement functions and the first
executable statement.

6.2 ARRAY DECLARATORS

Three kinds of specification statements nay specify
array declarators. These statements are the
following:

Type statements
DII{ENSION statements
COI'IMON statements

Of these, DII{IINSION statements have the declaration
of arrays as their sole function. The other two
serve dual purposes. These statements are defined
in subparagraphs 6.3,6.5 and 6.6.

Array declarators are used to specify the name,dimensionality and sizes of arrlys. An array maybe declared only once in a program unit.
An array declarator has one of ihe forlowing forms:

-t,l
-l

I
_l

i

l

IIICROSOFT 8060 FORTRAN.IV

ui (k)
ui (k1,k2)
ui (k1,k2,1<3)

where ui is the name of the arra.y, callecl thcoeclarat\)r name, and the k's are integer consta]tts.
Array storage alrocati-o:r is esLabli.sired ur)(-)nappearance of..the iirray dec_l.aral_or. such sLoi:;cjeis allocat--ecr .1ine3r1y t " the FOnTRAN-'-pr;;;;;;;;where the orCer of usce.r.jancy is eeteiinired lr), ti:efirst subscripl varying most rapiclly and ttre l.ast-subscr ipt varying teasi rapidly. (-'--J

For example, if the . array declarator AIIAT (3 ,2,2)ai)pear s ' storage is allocateci f or the r2 element_sin the .fcllowing order: -

1MAT(1,1,t), AMAT (2,1.,I), AtrAT(3,1,1
1MAT (2,2,l.), Aivlz\T (3,2,J)', AI1AT (I,I,2
AI.,{AT (3 ,I ,2) , AI4AT (I ,2 ,2)

',
A,}1AT (2 ,2 ,2

5.3 I-gE.ry
Variable, arrav and FUNCTION names a):eauro;naricalJ.y ivpgg rnr;;;; or Real. by rhe'pr e<ief inec. convention unr ess they ar e ciranged bv!'ype sta Lements. Fo! exannple,

.
the type is i;i"o;;if the f irst lelter of an iiem'is I, .T, K, L, I\I orN. Othervrise, the type is ReaI .

Type statements provide for overriding orconf irming the pre-dlf ined convention by spec i f 1r
jn,-,the type of an item. In addition, these statemcntsmay be used to declare arrays.-

Type statements have the forlovring general form:
t vl ,v2,...vn

where t represents one of the terms rNTEG'.R,ThITEGER*1 , TNTEGER*2 , REAL, REAL*4 , REAL*g , DoLjtsLEPRECISIONI LOGICAL, LOGICAL;], -LOGIC AL*2I Of BYTE.Each v is an array declaratoi it a variable, arrayOr FUNCTION NAM-A. ThC INTEGER*1, II\]TEGNR*2,REAL*4, REAL*E, LOGICAL*1, and LOGICAL*2 lVpu, areallowed for readability and compatibility wiLhotIIer FORTRANs. BYT}], INTEGER,.] , LCGIcALi]., anoLoGrcAL are aIt equivalenti'-iiincor.*2, iocrcal*2,and Ii\tTEGER are equiva:.int; REAL and REALx4 are
il.'li;:i:li: DouBLE PRECrsrorv and naai.a are

Examplc:

Page 33

, Ai'IAT (I ,2 ,l) ,

, Ai.iAT (2 ,7 ,2i

"

, Al'tAT (3 ,2 ,2)

uicnosort ggTa ToRTRAN-rv

REAL AMAT (3, 3, 5),BX, IETA,KLPH

Page 34

I.]CTE

1 . Al'lAT ancl IIX a r e r eciunrl an 1- J.';' l- \":e-o .
2. IETA anc KLIjH ..re ut,col)r-riti-onaJ-1y
declarcd Ii:iti.
3. A;!Ail'(.i ,3,5) is a
decl ar ato r spcc i fving
elements.

consta nt ar r ery
ar) array of 45

Exampl o :

INTEGEIT t41, HT, Jl'{P (15) , FL

NOTE

Ml j-s redundantly typed herc. Tyning of IITand FL by t-.he pre-def inocl convcnt-iorr j:;
overridden by tl'rcir appe;irarlcr-: j.n f.h,:_,
INTEGEII. s1-aternent. JI.ip(15) is a conste.iltarray declarat-or. It redunclant.l v tvr-rc:r i,itc_,
array cJ-erncnt-s as fnteger and corilrrunicates
to the processor the stor acye recJu j.r cmcn ts
and dirnensionality of the tsrray.

6.4

Example:

LOGICAL Ll, TEi"lP

NOTE

A11 variables, arrays or FUNCTIONs requj.recito be typed Logical qLlnL apDCjar in a
LOGI CAL st a temen t , s i nc c,-ild*'st a i- t i,",g I et t e rindicates these types by tire defaul.t
convention.

Exjlri&Nru :lu\JlilgNJs
EXTIJIINAL statements have the follov,,inq fornr:

MICROSOFT 8A8g FORTRAN.IV Page 35

.,un

SUtsROUTTNE, BLOCK DATA oT
the name of a subprogran is

a subprogram reference, it
in a preced ing EXTERNAL

t has the following form:

,u3r...,un
array declarator.

EXTERNAL ul,u2,..
where each ui is a
FUNCTION nane. t{hen
used as an argument in
must have appeared
s ta terilen t .

wlren a BLocK DATA subprogram is to be inclucreci in aprogram 1oad, its name must have appeared in an
EXTERNAL statement within the main program unit.
For example, if SUM and AFUNC are subprogram namesto be used as arguments in the subroulin" SUBR, thefollowing statements would appear in the

""irintprogram unit:

EXTERIiAL SU}.{, AFUNC

CALL SUBR (SUt't,AFUNC, X, y)

6.5 prME\SrO{ STATEMENTS

A DIMENSION statemen

DIi',IENSION u2,u2

where each ui is an

Example:

6.6 coMr4oN srArEI-EliIq

COMf"ION sta tement s
allocating statemen
arrays to a storacteprovide the facit ishare the use of the
COM|.{ON statements arform:

DIMENSION RAT (5, 5) ,BAR (20)

This statement declares two arrays the 25 erementarray RAT and the 20 element array BAR.

are non-executable, storaqe
ts which assign var iables anclarea cal1ed COMMON storage andty for various program units tosame storage area.

e expressed in the followinq

MICROSOFT EASA FORTRAI{-IV Page 36

cor'Il4oN /vL/At/Y2/A2/ . . . /vn/p'n

qfrere each Yi is a COI{MON blgck ?t9-tggS 1g1e and
each Ai is a seqllence of var iabLe names ' ar rav
names or constant array decl arators, separat-ed bv
commas. The eLernents in Ai make up the Cojii,il)I
blocll storase area soecif ieo bv ';ne nane Yi. If
EnT--vf---Ts oilf tJed lear,'ing two consecutive sl-a.sh
clraracters (//), the block of storage sc inc-lica'teci
is caIled blank COlll'lON. If ci're first block nane
(Yl) is omittec, the two slashes may be omitted.

Example:

coMIlON /ARAX/A, B, C/BDATA/X,Y ,2,
X FL, ZAP (34)

In this example, two blocks of COMillON storage are
allocated - AREA with space for three variables aud
BDATA, with space for four variables and the 3A
element arrayt ZAP.

Exampl-e

coMMoN / /at, BI,/CDATA/ZOT (3 , 3)
x / /T2 ,23

In this example, Al, 81, T2 and 23 are assigned to
blank COI'II,ION in that order. The pair of slashes
preceding Al could have been omitted.

CDATA names COI{I'IOI{ block storage for the nine
element array , ZOT and thus ZOT (3

' 3) is an arra\J
declarator . ZOT must not have been prev iously
declarecl. (see -Tairail-necGiato?il" E;;A;apil6:rt--
Additional Consider ations :

The name of a COI'lPlON block may appear more than
once in the sane COIII'iON statement, or in more
than one COMI"ION statement.

A COI\IMON block name is made up of frcm] to 6

alphanumer ic characters, the first of which
must be a letter.

A COMI'ION block name must be different froln any
subprogram names used throughout- the program.

The size of a COMI.ION area may be jncreased by
the use of EQUIVALENCE staternents. See
"EQUIVALfNCE Statements,,' paragraph 6.7.

I.

2.

3.

4.

FlICF,OSOFT 8g8A FORTRAN.IV

o. /

5' The lengths of coMMoN blocks oi the same nameneed not be identical in all progo;"
";il;where thg

- -name appears. However , af theIengths differ, the'progru* unit specifying thegreatest length must be loaoed first (see thed iscussion of LINI(_E0 in the U""r ,
" Guide) .The length of a COl,li,{CN area is the nurnber ofstorage units required to contain the variablesand arrays cleclared in the COi1MON s!atement (orstatements) unless expanded by the use ofEOUIVALENCI statements.

EQUIVALEIIC E STATET.IENTS

use of EQurvALElrCE statements permits the sharingof the same storage unit by Lwo or-more entities.The generar form ot-the siatement is as forlows:
EQUIVALENCE (ul), (u2),. . ., (un)

where each ui represents a seguence of t'o or morevariables or. array elements, separated by commas.Each elemena il the- sequon." is assigned the sanestorase unir. (or porrion or a =a;;;;; unir) by rheprocessor. The order in which the-"iJ*".,t= appearis not significant.
Example:

Page 37

EQUIVALENCE (A,B,C)

The variables A, Bstorage unit durinq

AdditonaL Considerations :

1. The subscripts of ari.nteger constants.

and C will share the sameobject program execution.
rf an array element is used in an EQUT'ALENCEstatement, the number of -=urru"r

iit" must be thesame as t.e number of d imensions establ ished by ti-rearray declarator, or it must be ol.re, where the onesubscript specif ieo !ri""' array erement,s numberrelative to Lt,e firit uiI*.nt of tire array.
Example:

If the dinen=i?"iliiry of an array , Z, has beendeclared as z !3 ,3) tfren- ln' u' EeurvaLstJce statementZ (6) and Z (3 ,2) have tn. -same
mean ing .

ray elements musL be

I,IICROSOFT 8g8g FORTRAN-IV Page 38

2. An element of a multi-dimensional 3sp617 rna/ be
referred to by a single subscript, if desireC.

3 . Var iabl es malz be ass igned to a COi\lMOii bl oc i<

through EQUIVALENCE statements.

Example:

coMMoN /x/A, B, C

EQUTVALENCE (A, D)

In this case, the variables A and D share the
f ir st storage un it in COil4t,tON bloc k X.

i!

4. EQUIVALENCE statements can increase the size of
a block ind icated by e. COI'iMON statement by
adding more elements to the end of the block.

Example:

DIMENS ICN R (2 ,2)
collMor{ /Z/W,X,Y
EQUIVALEI.ICE (Y, R (3))

The resulting COI'{I"ION block will have thc
following conf iguration:
Var iable Storaqe Unit

W = L(1.,1) 0
X = R(2,1') 1
Y = R(l-,2) 2

R(2,21 3

The COl.ll'lON bl oc k e stabl i shed by the COUI'iOII
statement contains 3 st*oraqe units. It is
expanded to 4 storage units by the EQUIVALETNCE
statement.

COI'IMON block size may be increased only from
the last element establ ished by the COMl"tOl,t
statement forvrard; not from its first element
backward.

Note that EQUIVALENCE (X, R (3)) vrould be inval id
in the example. Tlie COi\ti'tON statenrent
esLalrlished l^1 as the first erlernc:nt in the:
COi,lt'lON block and an attempt to make X and R (3)equivalent rvould be an attempt to make R (1.) thefirst element.

I"IICROSOPT 8A8A FORTRAN-IV Page 39

EQUIVALEI{CE two elements of
two elements belonging to the
COTUMON blocks.

5. It is invalid to
the same array or
same or different

DII'IENSIOl.l XTAtsLE (2gl , D (5)
cot4MoN A,B(4) /zp.P/c,x

EQUTVALENCE (XTABLE (5) ,A (7)x B (3) ,xrABLE (5) j ,Y (e(3),o(s))

This EOurvALElJcE statemenL has the folrowincyerrors:

1. rt atternpts to EeurvALENcE +-wo elements of thesame array, XTABLE(5) and XTABLE(15).
2. It attempts to EQUIVALENCE two elements of thesame COMMON i:Iock, A(7) and B(3).
3. Since A is not an array, A(7) is an illegalreference.

4. Making e(31 equivalent to D(5) extends COrrlilONbackwards from its defined =tirti"g-point.

Example:

DATA INTTIALIZATION STATEI.IENT6.8

The DATA initial ization statement is anon-executable statement which proviJ." a means ofcompiling data varues inLo Lhe object program andassigning these data to var iabres and arrayelements referenced by other statements.
The statement is of the following forrn:
DATA list,/ul ,u2,... tun/,list .../uk,uk+l r...uk*n/
where',list" represents a list of variable, arrayor array element narnes r dDd the ui- "r" constanl_scorrespondinq in number to the elements in theI ist. An gxception to the one_for_onecorrespondence of riit items to constants is thatan array name (unsubscripteJ)-';;;-;ppear in rhe

14ICROSOFT BO BO FORTRAN-IV Page 4g

list, and as many constants as necessary to filL
the array nay appear in the corresponoing position
betvreen slashes. Insi-ead of ui, it is permissible
to write k*ui ir: order to declare the same
constant, ui, li times in succession. k must be a
positive integer. Dummy argunents may not appear
in the 1 ist .

Example:

DII,IENS IO}J C (7)

DATA A, B, C(1),C(3)/I4.73,
x -8.1 ,2*7 .5/

This implies that
A=14.73, B=-8.f, C(1)=7.5, C(3)=7.5

The type of each constant ui must match the type ofthg_ corresponding item in the Iist, except Lfrat a
Holler ith or Literal. constant may be paired rvith anitem of any type.

When a Hollerith or Lj_teraI constant is used, the
number of characters in its string should be nogreater than four tinres the num.ber of storage unitsreguired by the correspond ing item, i ." . , Icharacter for a Log ical var iabl e, up to 2characters for an Integer variable anct 4 or fewer
characters for a ReaI var_-iable.

If fewer Itollerith or Literal- characters are
specif ied, trail ing blanks are acldecl to f il1 the
remainder of storage.

Hexadecimal data are stored in a similar fashion.If fewer Hexadec iinal char acter s are used ,sufficient leading zeros are added to fill the
remainder of ttre storage urrit.
The examples below illustrate many of the featuresof the DATA st.atement.

MrcRosoFT 8a80 FORTRAN-IV

DIMENSION HARY (2)
DATA HARY,B/ 4HTHrS, 4H OK.

,7.86

REAL LIT (2)
LOGICAL LT,LF
DIMENSTON H4(2,2),PI3(3)

_
DATA Al,B1,Kl, LT,LF,H4 (1, 1),H4 (2,I)

1 " H4 (1 ,2) ,H4 (2,2) ,Pr3/5.9,2.58_4,
?" 64 , . FALSE. , .TRUE. ,l.7iE-3,3 a.g5E-1 ,2*75.A,L.,2.,3.14I5g/4 Lrr(t)/'Noco'

Page 4I

MICROSOFT 8g8O FORTRAN-IV Page 42

SECTION 7

FORTRAN CONTROL ST.\TEMENTS

FORTRAN control statements are executable staternents whicli
affect and guicie the logical flow of a FORTRAI{ program. The
statements in this category are as fcllows:

l. GO TO statements:

t. Uncohditional cO TO

2. Computed GO TO

3. Assigned cO TO

2. ASSIGN

3. IF statements:

1. Arithmetic IF

2. Logical IF

4. DO

5. CONTINUE

5. STOP

7. PAUSE

8. CALL

9. RETURN

When statement labels of other statements are a part of a
control statement, such statement Iabels must be associated
with executable statements within the same program unit in
which the control statement appears.

7. I GO TO STATEI"IENTS

i.T.1 UNCONDITIONAL GO TO

llnconditionar Go To statements are used whenevercontrol- is to be transferred unconditionallv to
some other statement within the program unit. '

i

}IICROSOFT 8g8O T'ORTRAN-IV

The statement is of the following form:

GOTOK

where k is the statement 1abel of
statement in the same program unit.
Example:

co To 3i63Ia 4(tl = v1 -A(3)

376 A(2) =VECT
GO TO 3TO

fn these statements, statement 37G
statement 310 in the logical flow of
which they are a part.

7.L.2

Page 43

an executable

is ahead of
the program of

COI"IPUTED GO TO

Computed GO TO statements are of the form:

GO TO (kI,k2,...,n) ,j
where the ki are statement labels, and j is aninteger variable, I < j < n.

This statenent causes transfer of contror to thestatement labeled kj. If j S 1 or j > n, controlwill be passed to the next stafement iotlowing :Lrr"
Computed GOTO.

Exarnpl e j

i='
GO TO (7, 70, 7og, Taoa, 70a60) , J3Lg J=5
co To 325

When J = 3, t!" computed GO TO transfers control tostatement 7Ag. Changing J to egual 5 changes thetransfer to statement 70ggg. Making J = a or J = 5

Ii;ia
cause control ro be rransferied ro sraremenr

a,ssrc{Ep

Ass ig ned

GO TO7.1.3

GO TO statements are of the followinq

MICROSOFT 8O8O FORTRAN-IV Page 44

f orm:

co To j, (kI ,k2,...,kn)
or

GOTO J

where J is an integer variable name, and the ki are
statement labe1s of executabie statements. This
statement causes transfer of control to the
statemen't whose laber is equal to the current valueof J.

ex ec utabl e

with each
the integer

executed,
sta temen t

Oual ifications

1. ThC ASSIGN
assigned GO

2. The ASSIGN
which is a
of k's, if

statement must 1ogically precede an
TO.

statement must assign a value to J
statement label included in the list
the list is specified.

ExampIe,:

co To LABEL, (gg,gA, LLA)

Only the statement labels 80 , 90 or lgg may be
assigned to LAtsEL.

7.2 ASSIGN STATEILIENT

This statement is of the following form:

ASSTGN j TO i
where j is a staternent label of an
statement and i is an integer variable.
The statement is used in conjunction
assigned GO TO statement that contains
variable i. When the assigned GO TO is
control will be transfer:red to the
labeled j.

Example:

ASSIGN TOg TO LABEL

ASSIGN 9O TO LABEL

MICROSOFT SAE6 FORTRAN-IV

GO TO LABEL, (80,90,IAgl

i.3

7.3.1

IF STATEI{ENT

IF stateinents transfer control to one of a series
of statements depend ing upon a cond ition. Two
types of IF statements are provided:

Arithmetic IF
Logical. IF

AR.ITiIMETIC IF

The arithmetic IF statement is of the form:

IF (e) ml,m2 ,m3

where e is an arithmetic expression and ill, m2 and
m3 are statement labels.

Evaluation of expression e determines one of three
transfer possibilities :

rF (N-I) 5A ,'73 ,9
IF (AMTX(2,L,2)17,2,1

Expression Value

t5
g

-256

Page 45

Tr an s fer

5
73

7

If e is:
<g
=g
>0

Examples:

Statement

rF (A) 3,4, 5

Transfer to:
nl
m2
m3

to

7 .3.2 LOGICAL IF

The Logical IF statement is of the form:

rF (u) s

where u is a Logical expression and s is any
executable statement except a DO statement (see
7.4\ or another Logical IF statement. The Logical
expression u is evaluated as .TRUE. or .FALSE.
Section 4 contains a discussion of Logical
expressions.

Control Conditions:

If u is FALSE, the statement s is ignored and

I4ICROSOFT 8A8O FORTRAN.IV Page 46

control goes to the next statement fci.Iowing the
Log ical IF statement. If , hotr'ever , the expr ess ion
is TRUE, then control goes to the staternent s, and
subseguent program control follows normal
cond itions.

If s is a replacement statement (v = e, Section 5),
the variable and equality sign (=) must be on the
sane line, either immediately f ollorving Ir (u) or on
a separate continuation line with the line spaces
following IF(u) left blank. See example 4 below.

Exan'rpLes:

1. rF (r .Gt.2A) CO TO 115

2. IF (Q.AND.R) ASSIGN LO TO J

3. rF (z) CALL DECL (A, B, C)

4. rF (A.oRB. LE.Pr /2.)t=l
rF (A.OR.B.LE.Pr/21

X I=J

7 .4 DO STATEI,IENT

The DO statement, as implemented in FORTRAN,
provides a method for repetitivel y executing a
series of statements. The statement takes of one
of the two followinq forms:

1) DOki=ml ,m2,m3

or

2) DOki=ml,m2

where k is a statement label, i is an integer or
logical variable, and ill, m2 and m3 are integer
constants or integer or logical variables.

If m3 is 1, it may be omitted as in 2l above.

The following conCitions and restrictions govern
the use of DO statements:

I. The DO and the first comma must appear on the
in it ial 1 ine .

2. The statement Iabeled k, called the terminal
statement, must be an executable statement.

MICROSOFT 8g8g FORTRAN-IV

35.5
24

Page 47

19
14

3. The terminal statement must physically foliow
its associated DO, and the executable
statements following the DO, uP to and
including the terminal statement, constiLute
the range of the DO statement.

The terminal statement may not be an Arithmetic
IF, GO TO, RETURN, STOP' PAUSE or another DO.

If the terminal statement is a logical IF and
its expression is .FF-LSE., then the statements
in the DO range are reiterated.

If the expression is .TRUE., the statement of
the logical IF is executed and then the
statements in the DO range are reiterated. The
statement of tire logical IF may not be a GO TO,
Arithmetic IF, RETURN, STOP or PAUSE.

The controlling integer variable, i, is called
the index of the DO range. The index must be
positive and may not be mod ified by any
statement in the range.

If ml, fr2, and m3 are fnteger*I variables or
constants, the DO loop will execute faster ano
be shorter, but the range is limited to I2i
iterations. For example, the Ioop overhead for
a DO loop with a constant I imit and an
increment of 1 depends upon the type o-f the
index variable as follows:

Index Variable
TYPE

INTEGER*2
INTEGER*1

Over he ad
Microseconds Bytes

4.

5.

6.

8. During the first execution of the statements in
the DO range, i is equal to ml; the second
execution, i = mI+m3; the thiro, i=nr1+2*m3,
etc., until i is equal to the highest value in
this seguence less than or equal to m2, and
then the DO is said to be satisfied. The
statements in the DO range will always be
executed at least oncer €v€n if ml S m2.

When the DO has been satisfied, control passes
to the statement following the terminal
statement, otherwise control transfers back tothe first executable staLement followinq the DO
statement.

Example:

I,lICROSOFT 8A8g FOITTRAN-IV Page 4 8

The following example computes

r6a
Sigma Ai vrhere a is a one-dimensional arrav
i=1

DIMENSION A QAO)

SUIVI = A(1)
DO31 r-2,LAg

31 SUl4 =SUM + A(I)

END

9. The range of a DO statement may be extended toinclude all statements which may logica11y beexecuted between the DO and its terminalstatement. Thusr parts of the DO range may besituated such that they are not physicaffy
between the DO staternent and its Lerminal
statenent but are executed logically in the DOrange. This is called the extended ranse.

Example:

. Dn{ENSTON A (56A) , 8(509)

DO 5g r - LA, 327, 3

rF (v7 -c*c) 20,t5,31

5A A(I) = B(I) + c

:

26 c-c .05
co To 5g

3l C=C* .9125
co To 30

ra' rt is invalid to transfer contror into therange of a DO statement not itself in the r";;;or extended range of thc same Do statement.

I.TICROSOFT 8O8g FORTRAN-IV Page 49

ll.withintherangeofaDostatement,theremay
beotherDostatements'inwhichcasetheDo.s
must be nested. That is, if the range of one
DOcontainsanotherDO,thentherangeofthe
inner Do must be entirely included in the range
of the outer DO.

The terminal statement of the inner DO may also
be the terminal statement of the outer DO.

For example, given a two oimensional array A of
15 "rows and 15 columnsr dnd a 15 element
one-dimensional array B, the following
statements compute the 15 elements of array C

to the formula:

7.5

l5
Ck =Signa AkjBm, k = L,2,...,15

j=1

.
DIIvIENSION A(15,15), B(15), C(15)

DO 80 K =1115
C(K) = A-0
DO 8A J=l,15

:,
c(K) = C(K) +A(K,J) * B(J)

qONTINUE STATEMENT

CONTINUE is classified as an executable statement.
However r its execution does nothing. The form of
the CONTINUE statement is as follows:

CONTINUE

QONTINUE is frequently used as the terminal
statement in a DO statement range when the
statement which would normally be the terminal
statement is one of those which are not allowed or
is only executed conditionally.

9xample:

DO 5 K = L,LA

ie (cz1 5,6,6
6 CONTINUE

I',tICROSOFT 8080 FORTRAN-IV Page 5A

C2 = C2 +.995
5 CONTINUE

i .6 STOP STATEI"IENT

A STOP statement has one of the followinq forms:

STOP

or

STOP c

where c is any string of one to six characters.

i{hen STOP i s encounte r ed d ur ing ex ec ut ion o f the
object program, the characters c (if present) are
d isplayed on the operator control console and
execution of the program terminates.

The STOP statement, therefore, const itutes the
logical end of the program.

7.7 PAUSE STATEI4ENT

A PAUSE statement has one of the followinq forms:

PAUSE

or

PAUSE c

where c is any string of up to six characters.

When PAUSE is encountered during execution of the
object program, the characters c (if present) are
displayed on the operator control console and
execution of the program ceases.

The decision to continue execution of the programnis not under control of the program. If execution
is resumed through intervent ion of an operator
without otherwise chang ing the state of the
processor, the normal execution seguence, following
PAUSE, is continued.

Execution may be terminated by typing a 'Trr at the
operator console. TypinE any other character will
cause executron to resume.

MICROSOFT 8g8A FORTRAN-IV

7.8

7.9

7.ra

CALL STATEMENT

CALL statements control transfers into
subprograms and provide parameters forsubprograms. The general forms anddiscussion of CALL statements appear in
FT'NCTIONS AND SUBPROGRAMS.

RETURN STATEME}IT

The form, use ano interpretation ofstatement is described in Section 9.

END STATEIJIENT

The END statement must physically bestatement of any FORTRAN progra,ir.following forrn:

END

The END statement is an executable statement andmay have a statement rabe1. rt causes a transferof control to be made to the system exit routine$EX, which returns control to tie operating =y=a;;:

Page 5I

SUBROUTINE
use by the

detailed
Section 9,

the RETURN

the last
It has the

I"lICROSOFT 8A8A PORTRAN-IV Page 52

SECTION B

INPUT / OUTPUT

FORTRAN provi<ies a ser ies of statements which def ine the
control and conditions of data transmission between computer
memory and external data handling or mass storage devices
such as magnetic tape, d isk, 1 ine pr inter , puncheo carcl
processors, keyboard printers, etc.

These statements "are grouped as follows:

l. Formatted READ and WRITE statements which cause
ETrffiGA fi-Errnation-To ne -tEiTfr]Eed between the
computer and IrlO devices.

3. I/O statements for
-

---=---ol I1J.es.

4. ENCODE and DECODE statements for transferrinq data
uetwEEn-mEm6ifficffi-

5. FORI,IAT statements used in conjunction r,,rith
EffiETteA-Gcorrl- transmission to provide data
conversion and eCiting informatj.on between internal
data representation and external" character string
forms.

FORMATTED READ,/WRITE STATEMENTS

FORIIATTED READ STATEMENTS

2. Unformatted READ and WRITE
f'smf u n r5ifr-a t t eA-b i n5?t-Aa r a
to internal storase.

A formatted READ statement is
information from an input device

Two forms of the statement
fol lows :

staternents which
-In ;ETm similar

positioning and

used to transfer
to the computer.

are available, as

8.1

8.1.I

READ (u,f ,ERR=L1,END=L2) k

or

READ (urf ,ERR=Ll, END=L2)

where:

u - specifies a physical and Logical unit Numberand may be either an unsigrred inteqer or

Aux il iar
demar c at io n

,an

MICROSOFT 8080 FORTRAN-IV Page 53

through 255.
an Integer

to execution

integer variable in the range I
If an Integer var iable is used,
value must be assigned to it prior
of the READ statement.

Units l, 3, 4, and 5 are preassigned to the
console Teletypewriter. r-tnit 2 is preassigned
to the Line Printer (if one exists). Units
6-LA are preassigned to Disk Files (see
Appendix E). These unitsr ds well as units l1

255, ma? be re-assigned by the user (see
Appendix B).

f - is the statement label of the FORI4AT statement
describing the type of data conversion to be
used within the input transmission or it may be
an array name, in rvhich case the formatting
information may be input to the program at the
execution time. (See 8.5.10)

Lt- is the FORTRAN label on the statement to which
the L/O processor will transfer control if an
T/O etror is encountered.

L2- is the FORTRAN label on the statement to which
the r,/o processor will transfer control if an
End-of-File is encountered.

k - is a list of variable names, separated by com-
mas, specifying the input data.

READ (u,f)k is used to input a number of items,
corresponding to the names in the list k, from the
f ile on 1og ical un it u I and us ing the FOR|4AT
statement f to specify the external representation
of these items (FORMAT statements, 8.5). The ERR=
and END= clauses are optional. If not specified,
I/O errors and End-of-Files cause fatal runtime
errors.

The following notes further
the READ (u,f)k statement:

1. Each time execution
beg ins r d nevr record
read.

define the function of

of the READ statement
from the input file is

2. The number of records to be input by a single
READ statement is determined by Lne list, k,and format specifications.
The-list k specifies the number of items to beread from the input file and the rocations intowhich they are to be stored.

3.

MICROSOFT 8g8A FORTRAN-IV

Any nunber of
and the items

Page 54

items may appear in a single list
may be of different data types.

k are

of FORMAT

4.

5. If there are more quantities in an input record
than there are items in the list, only the
number of guantities equal to the number of
items in the list are transmitted. Remaininq
quantities are ignored.

6. Exact spec ifications for the 1 ist
described in 8.5.

See 8.5 for complete description
statements.

2. Input the quantities of an array (ARRY):

READ (6 ,2T) ARRY

OnIy the name of the array needs to appear in
the list (see 8.4). AIl elements of the array
ARRY will be read and stored using the
appropriate formatting specified by the FORMAT
statement labeled 2I.

READ (u, k) may be used in conj unction with a FORIIAT
statement to read H-type alphanumer ic data into an
existing H-type field (see HoIlerith Conversions,
8.s.3).

For example, the statements

READ (r , 25)

25 FORMAT (lOHABCDETGHIJ)

Exampleg:

1. Assume that four data entries are punched in a
card, with three blank columns separating each,
and that the data have field widths of 3, 4, 2
and 5 characters respectively starting in
column 1 of the card. The statements

READ (5,20)K,L,t"l,N
2A FORI'IAT (I 3, 3X, I4, 3X, I2, 3X, I5)

will read the card (assuming the Logical Unit
Number 5 has been assigned to the card reader)
and assign the input data to the variables K,
L, M and N. The FORIIAT statement could also be

26 FORMAT (r3, r7, I5, r8)

,^.

I4ICROSOFT 8680 FORTRAN-IV Page 55

characters of the file on inPut
read and replace the characters

FORI'{AT statement.

cause the next Lg
device I to be
ABCDEFGHIJ in the

8.1.2 FORMATTED WRITE STATEMENTS

A formatted WRITE statement is used to transfer
information from the computer to an output device.

Two forms of the statement are availabler ds
follows:'

WRITE (u, f , ERR=LI, END=L2) k

or

WRITE (u, f ,ERR=LI, END=L2)

where:

u specifies a Logical Unit Number.

f is the statement Iabel of the FORMAT statement
describing the type of data conversion to be
used with the output transmission..

Ll- specifies an T/O error branch.

L2- specifies an EOF branch.

k is a list of variable names separated by com-
mas, specifying the output data.

WRITE (urf)k is used to output the data specified
in the list k to a file on logical unit u using the
FORI.'IAT statement f to spec if y the external
representation of the data (see FORMAT statements,
8.6) . The following notes further define the
function of the WRITE statement:

1. Several records may be output with a single
WRITE statement, with the number deter:nined by
the list and FORMAT specifications.

2. Successive data are output until the
specified in the list are exhausted.

3. If output is to a device which specifies fixed
length records and the data specified in the
list do not fill the record, the remainder ofthe record is filled with blanks.

Example:

data

MICROSOFT 8A8g FORTRAN-IV Page 56

9{RITE (2 ,Tg)A, B, C, D

The oata assigneo to the variables A' B, C and D

are output to Logical unit l{unber 2, formatted
accoroing to the FORMAT statement labeled IA-

WRITE (u, f) may be usecl to wr ite alphanumer ic
information vrhen the chara.cters to be wr rtten are
specif ied wittrin the FCRI'IAT staterierrt. In this
case a variable list is nct required.

For exarnple, to write the characters 'H CONVERSION'
on unit I,

l*rru
(I,26)

26 FORI"IAT (12Hil CONVERSTON)

. 8.2 UNFORMATTED READ/I{RITE

Unformatted T/O (i.e. without data conversion) is
accomplished using the statements:

'vrv^v"/

READ (u,ERR=LI' END=L2) k

WRITE (u, ERR=LI, END=L2) k

where:

u specifies a Logical Unit Number.

Ll- specifies an I/O error branch.

L2- specifies an EOF branch.

k is a list of variable names' separated by
commas, specifying the I/O data.

The following notes define the functions of
unformatted I/O sLatements.

1. Unformatted READ/VJRITE statements per form
memory-image transmission of data with no data
conversion or editing.

2. The amount of data transmitted corresconds tc
the number of variables in the list k.

MICROSOFT 8g8O FORTRAN-IV Page 57

3. The total length of the list of variable names
in an unformatted READ must not be longer than
the record length. If the Iogical record
length and the length of the list are the same,
the entire record is read. If the length of
the list is shorter than the logical record
length the unread items in the record are
skipped.

The WRITE (a) k statement writes
record.

4.

5.

8.3 AUXILIARY I/O STATEMENTS

A logical record may extend
one physical record.

Three auxiliary I/O statements

BACKSPACE u
REWIND u
ENDFILE u

Initially, the actions of all
defined as no-ops. They ildy,
(see Appendices B and E).

one logical

across more than

are provided:

three statements are
however, be redefined

8.4 ENCOpq/pECOpE

ENCODE and DECODE statements transfer data,
according to format specifications, from one
section of memory to another. DECODE changes data
from ASCII format to the specified format. ENCODE
changes data of the specified format into ASCII
format. The two statements are of the form:

ENCODE (A, F)
DECODE (A, F)

where i

an array name
FORMAT statement number
an I/O List

K
K

Ais
Fis
K is

DECODE is analogous to a
causes conversion from
ENCODE is analogous to a
conversion from internal

READ statement, since it
ASCII to internal format.

WRITE statement, causing
formats to ASCII.

MICROSOFT 8986 FORTRAN-IV Page 58

NOTE

Care should be taken that the array A is
always large enough to contain all of the
data being processed. There is no check
f or over f 1ow. An nucoDE-opFiatf 6n ;6lsh
ffirfl6wEThe array will -orobably wipe out
important data follorving the array. A

DECODE operation which overflows will
attehpt to process the oata following the
ar r ay.

8.5 INPUT/OUTPUT LIST SPECIFICATIONS

Most forms of READ/WRITE statements may contain an
ordered Iist of data names which identify the data
to be transmitted. The order in which the list
itens appear must be the same as that in which the
corresponding data exists (Input) , or wiIl exist
(Output) in the external I/O medium.

Lists have the following form:

ml ,m27...1IIID

where the mi are list items separated by commas' as
shown.

8.5.1 LIST TTEI{ TYPES

A list item may be a single datum identifier or a

multiple data identifier.

1. A single datum identifier item is the name of a

variable or array element. One or more of
these items may be enclosed in parentheses
without changing their intended meaning.

Examples:

A
c(26,1)
B,r(10,

,R,K,D, (I,J)
L0) ,s, (R,K) ,F (1,25)

NOTE

The entry (I,J) defines two ltems
1 ist while (26,I) is a subscr iot.

rtl

MICROSOFT 8O8A FORTRAN-IV Page 59

is considereo equivalent to the
each successive element of the

subscript (s)
I isting of
ar r ay.

Example:

If B is a two dimensional array, the list item
B is equivalent to: B(1,1) ,B (2,1),B(3'1),
B(1, 2l,B(2,2).. .,8 (j,k) .

where j and k are the subscript limits of B.

b. DO-implied items are lists of one or more
single datun identifiers or other DO-implied
items followed bV a comma character and an
expression of the form:

l=mlrm2rm3ori=mlrm2

and enclosed in parentheses.

The elements irmlrm2,m3 have the same meaning
as defined for the DO statement. The DO
implication applies to all list items enclosed
in parentheses with the implication.

Equivalent Lists
x(1) ,x(2),x(3),x(4)
o(I),R(1) ,Q(2',),R(2)
G(I),c(4),c(7)
A(3,1),A(4,1),A(5,1)
A (3 , 5) , A (4 , 5) , A (5 , 5)
A(3,9),A(4,9),A(5,9)
R (I) , R (2) , r , ZAP (3)
R(3),T(1),R(3) ,T(2),
R(3),T(3)

Thus, the elements of a matrix, for example,
may be transmitted in an order different from
the order in which they appear in storage. The
array A(3,3) occupies storage in the order
A(IrI),A(2,L), A(3,1),A (l,2l,A(2,2),A(3,2),
A(I, 3),A (2,3),A(3,3) . By specifying the

Examples:

DO-Implied Lists
(X(I) rI=1,4)
(O(J),R(J) ,J=I,21
(G(K),K=l,7,3)
((A(I,J),I=3r5),J=l,9, 4l

(R (l'1) ,M=l, 2l ,T, ZAP (3)(R(3),T(r),r=1,3)

transmission of the array with the Do-impriedIist item ((A(I,J),J=I ,3),I=1,3), the order oftransmission is:
A(1,1) rA(I ,2l ,A(1,3),A(2,rl ,A(2,2),A(2,3),A(3. I),A(3, 2),A(3, 3)

MICROSOFT 8g8g FORTRAN-IV Page 6g

8.5.2 SPECIA"L NOTES ON LIST SPECIFICATIONS

l. The ordering of a list is from left to right
with repetition of items enclosed in
parentheses (other than as subscripts) when
accompanied by controll ing DO-impl ied index
Par ameter s .

2. Arrays are transmitted by the appearance of the
array name (unsubscripted) in an input/outout
I ist.

3. Condtants may appear in an input,/output l ist
only as subscripts or as indexing parameters.

4. For input Iists, the DO-implying elements i,
nil, m2 and m3 may not appear within the
parentheses as Iist items.

l. Any number of items may appear in a singte
List.

2. In a formatted transmission (READ (u,f) k,
WRITE (u,f) k) each item must have the correct
type as specif ied by a FORI,IAT statement.

Examples:

--t. READ (L,29) (f,J,A(I),I=I,J,2) is not allowed

2. READ (I,24) I ,J, (A (I) , I=1 ,J ,2) is allowed

3. WRITE (L,29) (I,J,A(I),I=I ,J,2) is allowed

Consider the following examples:

DIMENSION A (25)

A(I) = 2'L
' A(3) = 2'2

A(5) = 2.3
J = 5

WRITE (1,26) J, (I,A(I) rI=L,J,2l
:

the output of this WRITE statement is
:

5 r 1 r 2.I r3 ,2.2 r5,2.3

-

8.6

I.{ICROSOFT 8980 FORTRAN-IV Page 61

FORMAT STAIEMENTS

FORMAT statements are non-executable, generative
statements used in conjunction with formatted READ
and WRITE statements. They specify conversion
methods and data editing information as the data is
transmitted between computer storage and external
meoia representation.

FORMAT statements reguire statement Iabels for
reference (f) in the READ(u'f) k or WRITE (u,f) k
statements.

The general form of
follows:

a FORMAT statement is as

n FORMAT (slrs2r... rsn/sl' ,s2' , ... , sn'/.. .)

where n is the statement label and each si is a
field descr iptor. The word FORMAT and the
parentheses must be present as shown. The slash
(/) and comma (,) characters are field separators
and are described in a separate subparagraph. The
field is defined as that part of an external record
occupied by one transmitted item.

8.6.1 FIELD DESCRIPTORS

Field descriptors describe the sizes of data fields
and specify the type of conversion to be exercised
upon each transmitted datum. The FORIIIAT f ield
descriptors may have any of the following forms:

Desc r iptor

rFw.d
rGw.d
rEw. d
rDw.d
rIw

rLw

rAw
nHhIh2. . .hn
'1112.. .In'

Classi f ication

Nuneric Conversion

Logical Conversion

Hollerith Conversion

Spacing Specification
Scaling Factor

nX
mP

where:

II{ICROSOFT 8O8O FORTRAN-IV Page 62

yr and n are positive integer constants defining
the field width (includ ing dig its, dec imal
points, algebraic signs) in the external oata
representation.

d is an integer specifying the number of
fractional d igits appear ing in the external
data representation.

The characters F, G, E, D, I, A and L indicate
the type of conversion to be applied to the
iteqs in an input,/output I i st .

r is an optional, non-zero integer indicating
that the descriptor will be repeated r times.

The hi and 1i are characters from the FORTRAN
character set.

m is an integer constant (positive, negative,
or zero) indicating scaling.

NUMERIC CONVERSIONS

Input operations with any of the numer ic
conversions will allow the data to be represented
in a "Free Format"I i.e., commas may be used to
separate the fields in the external representation.

F-type conversion

Form: Fw.d

ReaI or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.
F-output

Values are converted and output as minus sign (if
negative) , followed by the integer portion of the
number I d decimal point and d digits of the
fractional portion of the number. If a value does
not fift the field, it is right justified in the
field and enough preceding blanks to fill the field
are inserted. If a value reguires more fieldpositions than allowed by w, the first w-I digits
of the value are output, pieceded by an asterisk.

I.

2.

3.

4.

5.

6.

8.6.2

I,IICROSOFT 8A8O FORTRAN-IV

F-Output Examples:

FORMAT
Descriptor VaIue

Internal Output

Page 63

ETO.4
F7. I
F8.4
F6.4
F7. 3

368.42
-4786.361 -4i86 .4
f .iE-2
4i39.76
-5. 6

(b=bl ank)

bb352.4249

bba.0375
* .7 6Ag

b-5 .6AA

* Note'the loss of leading digits in the 4th line
above.

F-Input

(See the description under E-Input below.)

E-tvps Conversion

Form: Ew.d

Real or Double Precision type data are processed
using this conversion. vr characters are processed
of which d are considered fractional.
E-Output

Values are converted, rounded to d digits, and
output as3

1. a minus sign (if negative),
2. a zero and a decimal point,

3. d decimal digits,
4. the letter E,

5. the sign of the exponent (minus or blank) ,

5. two exponent digits,
in that order. The values as described are rightjustified in the field w with preceding blanks to
fill the field if necessary. The field width $t
should satisfy the relationship:

w)d+7
otherwise significant characters may be lost. someE-Output examples follow:
FORMAT Internal Output
Descriptor Value (b=blank)

t'lrcRosoFT 80 80 FORTRAN-IV Page 64

812.5
E.14.7
tr'7 ?

8I3.4
E'8.2

E-Input

i6.5i3
-326i2.354
56.93
-0.9ar232r
76321.73

b0.i65i3Ebs2
-a.3267235Eb05,, 9.569E.
bb-0 .12328-92
0 .i 6Ebg5

Data values which are to be processed under Et F,
or G conversion can be a relatively loose fornat in
the external input medium. The format is ioentical
for either conversion and is as follows:

I. Leading spaces (ignored)

2. A + or sign (an unsigned input is assurned to
be positive)

3. A string of digits

4. A decimal point

5. A second string of digits

6. The character E

7. A + or sign

8. A decimal exPonent

Each item in the list above is optional; but the
following conditions must be observed:

I. If FORI{AT items 3 and 5 (above) are present,
then 4 is required.

2. If FORMAT item B is present, then 6 or i or
both are required.

3. AII non-leading spaces are considered zeros.

Input data can be any number of digits in length,
and correct magnituoes will be developed, but
precision wiIl be maintained only to the extent
specified in Section 3 for Real data.

E- and F- ano G- InPut ExamPles:

FORIlAT
De sc r ipto r

ElO. 3
810.3
c8. 3

Input
([=blank)

+6.23756+4
bbbbbl 7631
bl 628911

Inter nal
Val ue

+23:5 . 60
+I7.631
+1628.911

IVIICROSOFT 8080 FCRTRAN-IV

FLz. 4

Page 65

bbbb-6 32rI32 -632.1131

are identical to E-Input and
exponent may be specified with

rr E. r'

Note in the above examples that if no decimal point
is Eiven among tne input characters, the d in the
FORIIAT specification establishes the decimal point
in conj rrnction with an exponent , Lf g iven. If a
decima.I point is included in the input characters,
thre d spec if ication is ignoreo .

The letters E, F, and G are interchangeable in the
input f6rmat specifications. The end result is the
same.

D-Type Conver sions

D-Input and D-Output
E-Output except the
a r'Drr instead of an

G-Tvpe Conver sions

Form: Gw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered significant.

G-Input:

(See the description under E.-Input)

G-Output:

The method of output conversion is a function of
the magnitude of the number being output. Let n be
the magnitude of the number. The following table
shows how the number will be output:

Magnitude Equivalent Conversion

.1(= n < I
1(=n<Ig

d-2
l0(=n

d-l

F (w-4) .d,4X

F (w-4) . (d-1) ,4X

d-t
I0 F (w-4) .1, 4X

d

MICROSOFT 8A8g FORTRAN-IV

Lg(=n<I0

Otherwise

Examples:

FORMAT
De sc r ipto r

I6
I6
I3
T4
I3

Page 66

I-Conver sions

Form: Iw

only rnteger data may be converted by this form ofconversion. lr specifies field width.
f-Output:

values are conver ted to rnteger constants.Negative valnes are preceded by a minus sign. rfthe value does not fill the fiald, it is rightjustified in the field and enough preceding nrailsto fill the field are inserted. rf tha valueexceeds the field width, only the least signiricantw-I characters are output preceded by an asterisk.

F (w-4 | .g ,4X

Ew.d

fnter nal
Va1 ue

+2 8l
-2326L
L26
-226
L234

Input
(b=blank)

bt24
-L24
bb6732b
rb2b

Output
1 b=bI ank)

bbb2 8l
-2326I

t26
-226

*34

fnte r nal
Va1 ue

L24
-L24
67320
I020

I-Input:

A field of w characters is input and converted tointernal integer format. A minus sign may precedeth9 integer digits. If a sign is not present, thevalue is considered positive.
rnteger values in the range -32769 to 32767 areaccepted. Non-leaoing spaces are treated as zeros.
Examples:

Format
Descr iptor

I4
I4
T7
i4

8.6.3 HOLLERITH CONVERSIONS

I.{ICROSOFT 8680 FORTRAN-IV Page 6i

A-Tvpe Conversion

The form of the A conversion is as follows:

Aw

This descriptor causes unmodified Hollerith
characters to be read into or written from a
specified list item.

The maximum number of actual characters which may
be transmitteo between internal and external
representations using Aw is four times the number
of storage units in Lhe corresponding list item
(i.e., I character for logical items, 2 characters
for fnteger items, 4 characters for Real items and
8 characters for Double Precision iterns) .

A-Output:

If vrr is greater than 4n (where n is the number of
storage units required by the list item), the
external ouLput field will consist of w-4n blanks
followed by the 4n characters from the internal
representation. If w is less than 4n, the external
output field will consist of the leftmost w
characters from the internal representation.

Examples:

Format
Descr iptor

AI
A2
A3
A4
A7

Examples:

Format
Desc r iptor

A1
A3

Internal Type

Al Integer
AB Integer
ABCD Real
ABCD Real
ABCD Real

Input
Characters

A
ABC

Output
(b=blanks)

A
AB
ABC
ABCD
bbbABCD

A-Input:

If w is greater than 4n (where n is the number of
storage units required by the corresponding list
item) , the rightmost 4n characters are taken from
the external input field. If w is less than 4n,
the w characters appear left justified with w-4n
trailing blanks in the internal representation.

TyPe

Integ er
Integer

Inter naI
(b=bI anks)

Ab
AB

ttrcRosoFT 8980 FORTRAN-IV

I nteger
Real
Re al

Page 68

AB
Abbb
DEFG

A4
A1
A7

Format
De sc r ipto r

ABCD
A
ABCDEFG

or tA'
or 'bSTRINGb'
or 'X (2, 3) =12. A'
or 'IbSHOULDN' 'T'

Output
(b=blanks)

A
bSTRINGb
X (2 ,3) =12. g

IbSHOULDN 'T

H-Conver sion

The forms of H conversion are as follows:

nHhlh2...hn

'hlh2...hn'
These descr iptors process Hol1er ith character
strings between the descripLor and the external
field, where each h represents any character from
the ASCIf character set.

NOTE

Special consicieration is required if an
apostrophe (') is to be used within the
literal string in the second form. An
apostrophe character within the str ing is
represented by two successive apostrophes.
See the examples below.

H-Output:

The n characters hi, are placed in the external
f ield. In the nllh1h2. . .hn form the number of
characters in the str ing must- be exactly as
specified by n. Otherwise, characters from other
descriptors will be taken as part of the string.
In both forms, blanks are counted as characters.

Exampl es :

IHA
SHbSTRINGb
l lHx (.2 ,3) =I2 .0
I2HIbSHOULDN'T

H-Input

The n characters of the stri.g hi are replaced bythe next n characters from the input record" Thisresults in a nehr string of charactirs in the fielddescr iptor .

II'IICROSOFT 8g80 FORTRAN-IV

FORI4AT
De sc r iPto r

Page 69

Resultant
De sc r iPto r

4HABCD OT 'ABCDI
THbFALSEb or 'bFALSEh'
SHII,IATRIX OT . MATRTX'

4HI234 or
THbbFALSE OT

6Hbbbbbb or

, L234',
' bbFALSE.
'bbbbbb'

Input
(b=bIank)

ABCD
bFALSEb
I\,IATRIX

8.6.4 LOGICAL

8.5.5

CONVERSIONS#

The form of the logical conversion is as follows:

Lw

L-Output:

If the value of an item in an output I ist
correspon,l ing to this descr iptor is 0 , an F will be
outputi otherwise, a T will be output' rf w is
gr.it"t than 1, w-I leading blanks precede the
letters.

Examples:*
FORMAT
Descr iptor

L1
L1
L5
L7

Inter na1
VaIue

=S
<>g
<>g
=$

Output
(b=blank)

F
T
bbbbT
bbbbbbF

L-Input

The external representation occupies w positions.
It consists of optional blanks followed by a rrT" or
"F", followed by optional characters.

X DESCRIPTOR

The form of x conversion is as follows:

nX

This descriptor causes no conversion to occur, nor
does it correspond to an item in an input/output
1ist. When used for output, it causes n blanks to
be inserted in the output record. Under input
circumstances, this descriptor causes the next n
characters of the input record to be skipped.

Output Examples:

FORMAT Statement Output

I.{ICROSOFT 8084 FORTRAN-IV Page ig

(b=b-l anks)

AbbbbBc
bbbABcDb

Input String Resultant InPut

r2.5A8C120 L2.5,126
12345679r2 0r2

3 FORMAT (IHA,4X,2HBC)
7 FOR|'{AT (3X , 4ilABCD, lX)

Input Exampl-es:

FORI,IAT Statement

Lg
5

FORMAT (F4.1,3X,F3.0)
FORIIAT (7X, I3)

9.6.6 DESCRTPTOR

The P descriptor is used to specify a scaling
factor for real conversions (F, E, D, G). The form
is nP where n is an integer constant (positive,
negative, or zero).

The scaling factor is automatically set to zero at
the beginning of each formatted I/O call (each READ
or WRfTE statement). If a P descriptor is
encountered while scanning a FORMAT, the scale
factor is changed to n. The scale factor remains
changed until another P descriptor is encountered
or the I/O Eerminates.

Ef fec ts of Scale Factor on Input:
#

During E, F, or G input the scale factor takes
effect only if no exponent is present in the
external representation. In that case, the
internal value witl be a factor of lO**n less than
the external value (the number will be divided by
10**n before being stored).

Ef fec t of Scale Factor on Output:

E-Output' D-OutPut:

The coefficient is shifted
to the decimal Point, and
by n (the value remains the

F-Output:

The external value will be
value.

G-Output:

left n places relative
the exponent is reduced
same) .

l0**n times the internal

The scale factor is ignored if the internal value
is small enough to be output using F conversion.
Otherwise, the effect is the same as for E output.

8.5.7

8.6.7.r

MICROSOFT 8080 FORTRAN-IV Page 7I

STATEI"lENTSSPECIAL CONTROL FEATURES OF FORMAT

Repeat Specifications

-

The E, F, D, G, I, L and A field descriptors
may be indicated as rePetitive descriptors by
using a repeat count r in the form rEw.d,
rFw.d, rGw.d, rIw, rLw, rAw. The following
pairs of FORMAT statements are eguivalent:

65' FORMAT (3F8. 3,89 .z',)
C IS EQUIVALENT TO:

66 FORMAT (F8. 3, F8. 3, F8. 3 ,89.2)

14 FORIIAT (2r3 ,2A5 ,zEIg .51
C IS EQUIVALENT TO:

14 FORI:,IAT (I3,I3,A5,A5,810.5,E10.5)

Repetition of a group of field descriptors is
accompl ished by enclosing the group in
parentheses preceded by a repeat count.
Absence of a repeat count indicates a count of
one. Up to two Ievels of parentheses,
including the parentheses required by the
FORI'{AT statement, are permitted.

Note tn" following equivalent staternents:

22 FORMAT (r3,4 (F6.1,2X1)
C IS EOUIVALENT TO:

22 FORMAT (r3,F6.r,2X,F5.r,2X,F6.r,2X,
1 F 6.r ,2X)

Repetition of FOR['!AT descriptors is also
initiated when all descriptors in the FORMAT
statement have been used but there are still
items in the input,/output lisL that have not
been processed. When this occurs the FORMAT
descriptors are re-used starting at the opening
parenthesis that matches the last closing
parenthesis in the FORMAT statement. The
parentheses enclosing the entire I ist of
descriptors are not considered unless there are
no other parentheses in the list. A repeat
count preceding the parenthesized descriptor (s)
to be re-used is also active in the re-use.
This type of repetitive use of FOR|IAT
descr iptors terminates processing of the
current record and initiates the processing of
a nev, record each time the re-use begins.
Record demarcation under these circumstances is

t.

2.

3.

I.{ICROSOFT 8g8O FORTRAN-IV Page i2

the same as in the paragraph f .i -6.2 below.

Input Example:
Dil"IENSrON A (Igg)

Iroo
(3,13) A

I3 FORI'IAT (5F7. 3)

In this €xample, the first 5 guantities from each
of 26 records are input and assigned to the array
elements of the array A.

Output Example:

:

wRrTE (6,I2)E,F,K,L,l"t,KKrLL,!,1MrK3,LE, -
t 1.,13

12 rOno,ret QFg .4 , (3 r 7))

In this example, three records are wr-itten. Record
I contains E, F, K, L and M. tsecause the
descriptor 3I7 is reused twice, Record 2 contains
KK, LL and MM and Record 3 contains K3, L3 and M3.

8 .6 .7 .2 F ield Separ ato-r s

Two adjacent descriptors must be separated in the
FORMAT statement by either a comma or.one or more
sI ashe s .

4xample:

2HAK/86.3 or 2HAK, F6. 3

The slash not only separates field descriptors, but
it also specifies the demarcation of formatted
records.

Each slash terminates a record and sets up the next
record for processing. The remainder of an input
record is ignored; the remainder of an output
record is fiIIed with blanks. Successive sleshes
l///.../) cause successive records to be ignored on
input and successive blank records to be written on
outPut.

8.6. I

II'IICROSOFT 8g8O FORTRAN-IV Page i3

Output example:
DIMENSION A (LAg\ ,J (2gI

wRrrE (7,8) J,A
8 FORMAT (LgT7 /L0r1 /508i .3/5AF7.3)

rn this example, the data specified bv the list of
the WRITE statement are output to unit 7 accorCing
to the specifications of FORMAT statement 8. Four
records are written as follows:

Record I
(r)
(21

(r0)

Record 2

J (1r)
J (12)

J (2sl

Record 3

A(I)
o

l''
A(s0)

Record 4

A(sI)
olu''

A(100)

J
J

J

Input Example:

DTMENS rolr B (10)

*ueo (4 ,I7) B
17 FORr.lAr (F10 . 2/ELa .2/ / /8FL0 .21

In this example, the two array elernents B(f) and
B (2) receive their values from the first data
fields of successive records (the remainders of the
two records are ignored) . The third and fourth
records are ignored and the remaining elements of
the array are filled from the fifth record.

FORMAT CONTROL,
ffi,!,[EdaridN-

LI ST SPECIFICATIONS AND RECORD

The following relationshiPs and
between FORI"IAT control, input/output
record demarcation should be noted:

1. Execution of a formatted READ
statement initiates FORI"IAT control.

interactions
1 ists and

or WRITE

2. The conversion performed on data depends on
information jointly provided by the elements in
the input/output list and field descriptors in
the FORMAT statement.

MICROSOFT 8g8A FORTRAI{-IV Page 74

input/output 1 ist, dt Ieast one
types E, F, D, G, I, L or A must

the FORITIAT statement.

corresponds to a
the record and to a

F, G, I, L OE A in

3.

5.

6.

If there is an
descriptor of
be present in

4. Each execution of a fornatted READ statement
causes a new record to be input.

Each item in an input list
str ing of char acter s in
descriptor of the typeS E,
the FORMAT statement.

H and X descriptors commr:nicate information
directly between the external record and the
field descriptors without reference to list
items.

On input, whenever a slash is encountered in
the FORMAT statement or the FCRMAT descriptors
have been exhausted and re-use of descriptors
is initiated, processing of the current record
is terminated ano the following occurs:

d. Any unprocessed characters in the record
are ignored.

b. If more input is necessary to satisfy
list reguirements, the next record is
read.

The FOR!"IAT control has reached the last
outer right parenthesis of the FORMAT
statement.

8. A READ statement is terminated when all items
in the input list have been satisfied if:

The next FOR|"IAT descriptor is E, F, G, I ILorA.
a.

b.

If the input Iist has been satisfied, but thenext FORMAT descriptor is H or X, more data areprocessed (witn the possibility of new recordsbeing input) until one of the above conditions
exists.

If FORMAT control reaches the last r ightparenthesis of the FoRr4AT statement but thereare more list items to be processed, aII orpart of the dgscSiptors are reused. (See item3 in the <iesc.ip!iqn oi-nJp.ur Specifi;arions,sub-paragr:aph 9.2.6.1) ---r:

9.

MICROSOFT 808d FORTRAN-IV

IA. When a Formatted WRITE statement
records are wr itten each time

8.5.9

1S
a

Page 75

executed,
slash is

encountered in the FORMAT statement or FORMAT
control has reached the r ightmost r ight
parenthesis. The FORI,IAT control terminates in
one of the two methods described for READ
termination in 8 above. Incomplete recoros are
filled with blanks to maintain record lengths.

FORMAT CARRIAGE CONTROL

The first character of every formatted output
record is used to convey carriage control
inforrnation to the output device, and is therefore
never pr inted. The carr iage control character
determines what action will be taken before the
line is printed. The options are as follows:

Control Character Action Taken Before Printing

0 Skip 2 lines
I Insert Form Feed
+ No advance
Other Skip I line

8.6.10 FORI,IAT SPECIFICATIONS IN ARRAYS

The !'ORI,IAT reference, f , of a formattr:d READ or
VIRITE statement (See 8 . I) may be an ar r ay nane
instead of a statement label. If such reference is
made, at the time of execution of the READ/WRITE
statement the first part of the information
contained in the array, taken in natural order,
must constitute a valid FORMAT specification. The
array may contain non-FORt'lAT information following
the r ight parenthesis that ends the FORIIAT
spec if ication.

The FORMAT specification which is to be inserted in
the array has the same form as defined for a FORI{AT
statement (i.e., it begins with a left parenthesis
and ends with a right parenthesis).

The FORMAT specification may be inserted in the
array by use of a DATA initialization statement, or
by use of a READ statement together with an Aw
FORMAT. Example:

Assume the FORI'IAT specification
(3F10. 3, 4r 6)

or a similar L2 character specification is to be

I.,IICROSOFT 8g80 FORTRAN-IV Page i6

stored into an array. The array must a1low a

minimum of 3 storage units.

The FORTRAN coding below shows the various methods
of establishing the FCRMAT specification and then

' referencing the array for a formatteC READ or
WRITE.

C DECLARE A REAL ARRAY
DIMENSIOTI A(3), B(3), M(4)

C INITIALIZE FORMAT !{TTH DATA STATEI4ENT

:oro

A/' l3F1 ' ,'0 .3 ,', ,', 416) ', /

C READ DATA USING FORMAT SPECIFICATIONS
C IN ARRAY A

READ(6,A) B, M

C DECLARE AN INTEGER ARRAY
DIMENSION IA(4), B(3), M(4)

C READ FORI'IAT SPECIFICATIONS
READ (7,T5) IA

C FORMAT FOR INPUT OF FORMAT SPECIFICATIONS
15 FORMAT (4A2)

C READ DATA USING PREVICUSLY INPUT
C FORMAT SPECIFICATION

:r^"

(7,rA) B,r,r

MICROSOFT 8g8g FORTRAN-IV Page 17

SECTION 9

FUNCTIONS AND SUBPROGRAMS

The FORTFAN language provides a means for defining and using
ofien needed programming orocedures such that the statement
or statements of the procedures need appear in a program
only once but may be referenced and brought into the logical
execution seguence of the program whenever and as often as
needed.

These procedures are as follows:

Statement functions.

Library functions.

FUNCTION subprograms.

SUBROUTINE subprog rams .

Each of these procedures has its own unigue reguirements forreference e.nd defining purposes. These requirements are
d iscussed in subseguent paragraphs of this section.However, certain features are common to the whore group orto two or nore of the procedures. These common features areas follows:

Each of these procedures is referenced by its name
which, in all cases, is one to six alphanumeric
characters of which the first is a letter.
I.he f irst three are designated as ,,f unctions,, andare alike in that:

They are always single valued (i.e., theyreturn one value to the program unit from whichthey are referenced) .

1.

2.

3.

4.

2.

1.

2.

3.

They are referred to by
containing a function name.

They must be typed
statements if the
single-valued result i
that indicated by the

an expression

by type specification
data type of the

s to be different from
pre-def ined convention.

F'UNCTION subprograms and
considered program units.

3. SUBROUTINE subprograms are

MICROSOFT 3O8g T'CRTRAN-IV Page 78

In the follovring descr: iptions of these procedures, the term
calling progranl neans the program unit or procedure in which
a reference to a procedure is made, and the term "calleci
program" means the procedure to which a reference is lnade.

9.1 THE PRCGRAM STATEI"IENT

The PROGRAI4 statement provides a means of
specifying a name for a main program unit. The
form of the statement is:

9.2

PROGRAI\,I name

If present, the PROGRAM statement roust appear
before any other statement in the progran unit.
Thr: name consists of l-6 alphanumeric characters'
the first of which is a letter. If no PROGRAM

statement is present in a main progran, the
compiler assigns a name of $ltafN to that program.

STATEMENT FUNCTIONS

Statement functions are defined by a single
arithmetic or J.ogical assignment statement and are
relevant only to the grogram unit in rvhich they
appear. The general form of a statement f unct j-cn
is as follows:

f (aI, a2, .an) = e

where f is the f unction name, the ai are durnmy
arguments and e is an ar ithmetic or logical
expr ess ion .

Rules for ordering, structure and use of
functions are as follows:

statemen t.

I. Statement function definitions, if they exist
in a program unit, must precede all executable
statements in the unit and foIlow aI1
spec if ication statements.

2. The ai are distinct variable names or array
elements, but, being oummy variables, they may
have the same names as variables of the same
type Eplrear ing elsewhere in the program unit.

l" The cxpression e is constructercl according to
the rul-es in SECTION 4 and na\r conta in only
references to the dummv arciunents and
ncn-Literal consLants, var iable and ar ray
element references, utility and mathematical
func tion references and references to

I'IICROSOFT 8g8g FORTRAN-IV Page 79

previously defined statement functions.

The type of any statement function name or
argument that differs from its pre-defined
convention type must be defined by a type
spec if ication statement.

The relationship between f and e must conform
to the replacement rules in Section 5.

A statement function is called by its name
followed by a parenthesized list of arguments.
The expression is evaluated using the arguments
specified in the call, and the reference is
replaced by the result.

The ith parameter in every argument Iist must
agree in type with the ith dummy in the
statement function.

Ttre example below shows a statement function and
statement function call.

C STATEI,IENT FUNCTION DEFINITION
c

FUNCT (A,B,C,D) = ((A+B) **C) /D

STATEIT{ENT FI]NCTION CALL

Al2=AI-FUNCI (X, Y, Z7 ,Ci)

LIBRARY FUNCTIONS

Library functions are a grouP of ut'ility and
mathematical functions which are "built-in" to the
FORTRAN system. Their names a pre-defined to the
Processor and automatically typed. The functions
are listed in Tab1es 9-1 and 9-2. In the tables'
arguments are denoted as a1ra2,...ran, if more than
one argument is required; or as a if only one is
required.

A Iibrary function is called when its name is used
in an arithmetic expression. Such a reference
takes the following form:

f (al ,a2,...an)
where f is the nane of the function and the ai are
actual arguments. The arguments must agree in
lype, number and order with the specifications
indicated in Tables 9-1 and g-2.

4.

5.

6.

c
c

9.3

MICROSOFT BLSA FORTRAN-IV Page 8g

In addition to the functions listed in 9-1 and 9-2,
four additional library subprograms are provided to
enable direct access to the BgBg (or ZB0) hardware.
These are:

PEEK, POKE, INP, OUT

PELIK and INP are Log ical f unctions; POKE and OUT
are subroutines. PEEK and POKE allow direct access
to any memory location. PEBK (a) returns the
contents of the memory location specified by a.
CALL POKE(a]-,a2) causes the contents of the memory
Iocation specified by aI to be replaced by the
contents of a2. INP and OUT allow direct access to*,he I/O ports. INP (a) does an input f rom oort a
and returns the 8-bit value input. CALL OLIT (aI,a2)
outputs the value of a2 to the port specified by
aI.
Examples:

Al = B+FLOAT (ri)

MAGNI = ABS (KBAR)

PDIF = DIll(C,D)

53 = SIN(T12)

ROOT = (-B+SQRT (B**2 -4 .*A*C)') /
1 (2. *A)

I,IICROSOFT 8089 FORTRAN-IV Page 81

TABLE 9-1

Intrinsic Functions

Function Name Definition Types
Argument Function

ABs I al
IABS
DABS

ReaI Real
Integer Integer
Double Double

AINT Sign of a times lar- Real ReaI
INT gest integer (=lal Real Integer
IDINT Double Integer

F
AIvtOD at (mod a2) ReaI ReaI
MOD fnteger Integer

a AI,IAXO Max(alra2r...) Integer Real
AMAXI ReaI Real
!'lAxg rnteger rntegerF MAX1 Real Integer

- DI'{AXI Double Double

F AIIIN A Min (al , d2, . . .l Integer Real
AII{IN I Real Re al
MIllO Integer Integer
It{INl Real IntegerF DMINI Double Oouble

FFLoAT:;ffi::':li::TrnteserReal
rFrx i::1"[:';1.ff:l Rear rnteser

SIGN Sign of a2 times I al I Real RealISIGN Integer IntegerDSIGN Double Double

DIM al - Min(al,a2) Real RealIDII'I Integer Integer
SNGL Double Real

DBLE ReaI Double

IT,IICROSOFT 8g8g FORTRAN-IV

TABLE 9.2

Basic External Functions

Name Number Definition TYPe
of Arqument Function

Arguments

Page 82

ExP 1 e**a
DEXP 1

ALOG I In (a)
DLOG 1

Ar,oclg I 1o910 (a)
DLOGIg I

SIN I sin (a)
DSIN 1

COS 1 cos (a)
DCOS 1

TANH I tanh (a)

ReaI
Do ubl e

ReaI
Double

ReaI
Doubl e

Re al
DoubI e

Real
Do ubl e

Re aI

Real
Double

Real
Doub1e

Re al
DoubI e

Re al
Double

Re al
Do ub1 e

Re aI

Real
Doubl e

ReaI
Double

Re al
Doubl e

Double

SQRT I (a) ** I/2 ReaI
DSQRT 1 Double

ATAN I arctan (a) Real
DATAN 1 Doubl e

ATAN2 2 arctan (aL/a2) ReaI
DATAN2 2 Double

Dl,lOD 2 aI (mod a2) Double

,^.

MICROSOFT 8O8A FORTRAN-IV

9.4 FT'NCTION SUBPROGRAMS

A program unit which begins
statement is called a FUNCTION

A FUNCTION statement has one
forms:

t FIJNCTION f (al , a2, .. . an)

or

FTNCTION f (al ,a2,...an)
where:

9.s

Page 83

with a FIINCTION
subproEram.

of the following

2.

3.

1. t is either INTEGER, REAI, DOUBLE PRECISION or
LOGICAL or is empty as shown in the second
form.

f is the name of the FUNCTION subprogram.

The ai are dummy arguments of which there must
be at least one and which represent variable
names, array names or dumrny names of SUBROUTINE
or other FUNCTION subprograms.

CONSTRUCTION OF FT]NCTION SUBPROGRAMS

Construction of FTNCTION subprograms must comply
with the following restrictions:

I. The FTNCTION statement must be the first
statement of the program unit.

2. Within the FUNCTION subprograln, the I'UNCTION
name must appear at least once on the left side
of the eguality sign of an assignment statement
or as an item in the input list of an input
statement. This defines the value of the
FIJNCTION so that it may be returned to the
calling progran.

Additional values may be returned to the
calling program through assignment of values to
dummy arguments.

Exa$ple:

FUNCTION Z7 (A,B,C)

:
T

z7 = 5. * (A-B) + SQRT (C)

MICR.CSOFT ELSA FORTRAN-IV Page 84

.

C REDEFINE ARGUMENT
B=B*27

RETURN

END

3. The names in the dunmy argument list may not appear
in EQUIVALENCE, COI4MON or DATA statements in the
FUNCTION subprogram.

4. If a dummy argument is an array name, then an array
declarator must appear in the subprogram with
dimensioning information consistant with that inthe calling program.

5. A FUNCTTON subprogram may conta in any defined -FOP.TRAN statements other than BLocK DAT'Ast-atenents, suBRourrNE statements, another FUNCTToNstatement or any statement which references either -the FUi'tcTrot{ bel-ng defined or another subproc,ranthat references the FUNCTION being defined.
6- The logicar termination of a FUNcrroN subprogram isa RETURN statement and there must be at least oneof them.

7 - A FUNcrroN subprogram must physicatJ_y terminatewith an END statement.

Example:

FUNCTION SUM (BARY,I,J)
DIMENSTON BARY (L0,20)
SUM = A.A
DO 8 K=1, I
DO8 M = l,J

8 SUM = SUM + BARY(K,M)
RETI'RN
EI'lt)

9.6 REiEp.gxglxs .1 .UNC.IrON SUBF'RocRAtr

FUNcrroli subprograms are called ryhenever theFUI\CTION name, accompanied by an argument I ist, is

A

MICROSOFT 8g8O FORTRAN-IV Page 85

used as an operand in an exPression. Such
references take the following form:

f (aI ,a2r...,an)
where f is a FUNCTION name and the ai are actual
arguments . Par enthe se s must be pr esent in the f orrri
shown

The arguments ai must agree in type, order and
number with the dummy arguments itt the FUNCTION
statement. of the called FUNCTION subprogram. They
may be any of the following:

I. A

2. An

3. An

4. An

5. A

6. A

var iable naine.

array element name.

array name.

expression.

SUBROUTINE or FUNCTION subprogram name.

HoIIerith or Literal constant.

: If an ai is a subprogram name, that name must have
previously been distinguished from ordinary
variables by appearing in an EXTERNAL statement and
the corresponding dummy arguments in the cal1ed
FUNCTION subprograms must be used in subprogram
references.

If ai is a Hollerith or Literal constant, the
corresponding dunmy var iable should encompass
enough storage units to correspond exactly to the
amount of storage needed by the constant.

When a FT NCTION subprogram is called, grogram
control goes to the first executable statement
following the FUNCTION statement.

The following examples show references to
subprograms.

zLg = FTI+Z7 (D,T3, RHO)

DIMENSION DAT(5,5)

S1=TOT1+SUM(DAT,5,5)

SUBROUTINE SUBPROGRA},IS

FUNCTION

f.i

MICROSOFT SOBg FORTRAN-IV

A program unit which begins wi
statement is called a SUBROUTINE
SUBROUTINE statement has one o
forms:

SUBROUTINE s (al,a2,...,an)

or

SUBROUTINE S

where s ls the name of
and each ai is a dummy
variable or array name
FUNCTION name.

Page 86

Th a SUBROUTINE
subprogram. The

f the followinq

the SUBROUTINE subprogram
argument which represents a
or another SUBROUTINE or

,\

9.8 CONSTRUCTION

The SUBROUTINE
of the subprog

The SUBROUTINE
any statement

OF SUBROUTINE SUBPROGRAI,IS

statement must be the first statement
ram.

subprogram name must not appear in
other than the initial SUBROUTINE

i^
the

.1.

i
-2

2.

3.

statement.

The dummy argument nanes must not appear
EQUIVALENCE, COMI1ON or DATA statements in
subprogram.

4.

5.

6.

If a dummy argument is an array name then an array
declarator must appear in the subprogram with
dimensioning information consistant with that in the
calling program.

If any of the dummy arguments represent values that
are to be determined by the SUBROUTIT.IE suborogram
and returned to the calling prcgram, these dumny
arguments must appear within the subprogram on the
left side of the eguality sign in a reolacement
statement, in the input list of an input statement
or as a parameter within a subprogram reference.

A SUBROUTINE may contain any FORTRAN statements
other than BLOCK DATA statements, FUNCTION
statements, another SUBROUTINE statement, a PROGRAM
statement or any statement which references the
suBRourrNE subprogram being defined or another
subprog r am wh ich references the SUBROUTINE

t-

subprogram being defined.

A SUBROUTINE sr:bprogram may contain any number
RETURN statements. It must have at least one.

of

,.^.

' ,Al' -+,

II'IICROSOFT 8080 FORTRAN-IV Page 87

9.

10.

The RETLIRN statement (s) is the loqical tdrmination
point of the subprogram.

The ph),sicaI termination of a SUBROUTINE subproqrcrnr
is an END statement.

If an actual argument transmitted to a SLlRItOtl'IlNt,l
subgrogram by the callinq program is the namo of ;r
SUBROUTINE or FUNCTION subproqram, tllt corrr.sDOnilrnq
dummy argument nust be usec'l in the calit:d SLrRlit)tl1'JNI.:
subprogram as a subprogram reference.

Ex ampl e :

C SUBROUTINL- TO COUN'| POS I't IVE
C IN AN ARRAY

SUBROUTIN Ii COUNT P (ARRY, I
. DIMENSION ARRY (7)

CNT=6
DO 9 J=l,f
IF(ARRY(J))9,5,5

9 coNT IhrLrrt
RETURN

5 CNT = CN't+l . 0
GOTO9
END

U T,EM I]NTS

, cN'l)

9.9 REFERENC]NG A SLIIIROI.I'I'TNII STIRPROGTTANI

8.

A SUBROUT IN f: s ubpr og
CALL staternent. A
following forms:

CALL s(al ,d2,...,an)
or

CALL s

ram mc?y be calletl Lry usinq a
CAt,L statement has ()r)c <tf tltt'

where s is c1 stlsltotfrlNn sulrpro(lr am nime antl tlre ;r iarc thc actual arquments to [)t- urj(.cl t.y tlr<.subprogrc-tm. 'l'trt' ;ri mtt:;t a(lt-(.(\ itt ty1rr., trt.rl t. 1. .tnrlnttmbcr with thr: corrospontl irrrl ritrnrrrrv Jl.(lulll(\ltt l: i rrtttc subprot';ram-clcf inirrty Stlillt()tl,l' I NI.; :;L.lt (.nl(.nt .

The arguments in a Cnl,l, st.rtcmont mlr:;t
the f ol lowing rultts:

c-ontply witlr

l. FUNC'l'I()N and SLtB trOU,t, I N t.:

arqunlent- t ist mu:.;t lrlvt
an tiX'f l:iRNn t, :;t.'rt c,urt.rrt .

llilnl(':: .tl)l)(t.ll
Frt t'v tottl; I y

i tt..t i rt t ltt'
.l |)l't(' .t t t.tl i rt

MICRLTSOFT BOBS POR.TRAN-IV Page 88

2. If the called SUBROUTINE subprogram contains a
var iable array declarator, then the CALL
si.atement must conta in the actual narne of the
array and the actual dimension specifications
as arguments.

3. If an item in the SUBROUTINE subprogram dummy
argument list is an array, the corresponding ^
item in the CALL statement arqument 1 ist must
be an array.

When a SUBROUTINE subprogram is ca11ed, program
control goes to the first executable statement
following the SUBROUTINE statement.

Examg_Ie:

DIMENSION DATA (IO) -

.-
C THE STATEITIENT BELOW CALLS THE
C SUBROUTINE IN THE PREVIOUS PARAGRAPH
c

CALL COUNTP (DATA, IO,CPOS)

9.TA RETUP.i.I FROM FUNCTION AND SUBROUTINE SUBPROGRAMS

The logical termination of a FUNCTION or SUBROUTINE
subprogram is a RETURN statement ivhich transfers
control back to the calling program. The general
form of the RETURI'I statement is simplv the word

RETURN

The following rules govern the use of the RETURN
statement:

1. There must be at least one RETURN statement in
each SUBROUTINE or FIINCTION subprogram.

2. RETURN from a FUNCTION subprogram is to the
instruction sesuence of the call ing program
following the FUi'ICTION referenc€.

3. RETURN from a SUBROUTI\IE subprogram is to the
next executable statement in the caII ing
program which would IogicaIIy folIow the CALL
statement. ,a

4. Upon return from a FUNCTION subprogram the r
single-valued result of the subprogram is
available to the evaluation of the expression
from which the FUNCTION calI was made.

MICROSOFT 8O8A FORTRAN-IV Page 89

5. Upon return from a SUBROUTINE subprogran the
values assigned to the arguments in the
SUBROUTINE are available for use by the calling
program.

Example:

CalIing Program Unit

:

CALL SUBR(Z9,87rR1)

.

CaIled Program Unit

SUBROUTINE SUBR (A, B,C)
READ (3 ,7) B
A = B**C
RETURN
FORI'IAT(F9.2)
El.lD

In this example, Z9 and B7 are made available
the calling program when the RETURN occurs.

t"

9.11 PROCESSING ARRAYS IN SUBPROGRAMS

If a calling program passes an array name to a
subprogram, the subprogram must contain the
dimension information pertinent to the array. A
subprogram must contain array declarators if any ofits dummy arguments represent arrays or array
elements.

For example r B FUNCTION subprogram designed to
compute the average of the elements of any one
dimension array might be the folowing:

Calling Program Unit
DTMENSTON zL (59),22 (25)

lt
= AVG (2I,50)

I,IICROSOFT SgBA FORTRAN-IV Page 96

AZ = AI-AVG (22,25)

CaIled Program Unit.

FUNCTION AVG (.qRG, I)

DIMENSION ARG (50)

SUM = 4.0
DO 2g J=l, I

2g SUl,t = SUll + ARG (J)

AVG = SUt-4/ FLOAT (I)
RETURN
END

Note that actual arrays to be processed by the -FTNCTION subprogram are dimensioned in the calling
program and the array narnes and their actual
dimensions are transmitted to the FUNCTION
subprog'iain by the FUNCTIOtf subprogram reference.
The FLDICTION subprogram itseif contains a dummy
array and specifies an array declarator.
Dimensioning information may also be passed to the
sub'program in the paramater I ist. For exainpl e:

CalIing Program Unit

:t-ENSroN

A (3,4, s)

CALL SUtsR (A,3, 4,51

.

END

Called Program Unit

SUBROUTINE SUBR (X, I,J,K)
DII4ENSTOi'l X(r,J,K)

nntu**
END

It is valid to use variable dimensions only rvhen
the array name and all of the variable E'fi6nsions
are dummy arguments. The variable dimensions must
be t1'pe Integer . I t i s inval id to chang e the
values of any of the variable dimensions within the
called program.

MICROSOFT 8O8A FORTRAN-IV Page 91

9.L2 BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram has as its only purpose the
initialization of oata in a COMMON block curing
loading of a FORTRAN object program. tsLOCK DATA
subprograms begin with a BLOCK DATA statement of
the following form:

BLOCK DATA Isubprogram-name]

and end with an END statement. Such subprograms
may conta in only Type , EQUI VALENCE, DATA, COI'IMCN

and DIMENSION statements and are subject to the
following considerations :

I. If any element in a COMI.'ION block is to be
initialized, dI1 elenents of the block must be
listed in the COI"IMON statement even though they

" might not all be initialized.

2. Initial ization of data in more than one COl,llvlON
block may be accomplished in one BLOCK DATA
subprogram.

3. There may be more Lhan one BLOCK DATA
subprogram loaded at any given tine.

4. Any particular COlll,lON block item should only be
initialized by one program unit.

Example:

BLOCK DATA
LOGICAL A1
coMr'1oN/BETA/B (3, 3) /c\v/ C (4)
cot'1l,loN/ALPHA,/A1 , C, E, D
DATA B/I.I,2.5, 3. 8,3*4.96,

L2*g .52,L.I/,C/I. 2Eg, 3*4 . A /
DATA AI/ .TRUE/,8/-5.6/

MICROSOFT 3O8A F'OR.TRAN-IV Page 92

APPENDIX A

Language Extensions and Restrictions

The FORTRAN.-80 langrrage includes the following extensions to
ANSI Standard FORTRAhI (X3. 9-1966) .

1. If c is used in a'STOP c'or TPAUSE c' statement,
c may be any'six ASCII characters.

2. Error and End-of-File branches nay be specified in
READ and WRITE statements using the ERR= ano END=
opt ions .

3. The standard subprograms PEEK, POKE, INP, and OUT
have been addeC to the FORTRAN librarv.

4. Statement functions may use subscripted variables.

5. Hexadecimal constants mav be used wherever Integer
ccnstants ar e no rrnal ly al lowed F

6. The literal form of Hollerith oata (character
st-ring between apostrophe characters) is permitted
in place of the standard nH form. -

7. iiolleriths and Literals are allowed in expressions
in place of Integer constants.

B. There is no restr iction ..o the number of
continuation I ines.

9. Mixed mode expressions and assignments are alIowed,
and conversions are done automatically.

FORTRAIi-80 praces Ehe following restrictions upon standard
FORTRAN.

1. The COMPLEX data type is not implemented. It may
be included in a future release.

2. The specification statements must appear in the
following order:

I . I'ncnf ,r li , ilTIlllnllTTl.lF , FirrlcTr'all, pr-aaK n^m?\

2 , I r'pe , t-.i':JRt;i,.:, :IME)tS ::)I

3. COMMOT{

MICROSOFT 8O8g FORTRAN-IV Page 93

4. EQUIVALENCE

5. DATA

6. Statement Functions

3. A different amount of computer memory is all.ocated
for each of the data types: Integer, Real, Double
Precision, Logical.

4. The equal sign of a replacement statement and the
first comma of a DO statement must appear on the
initial statement 1 ine.

Descriptions of these language extensions and restrictions
are included at the appropriate points in the text of this
document.

T4ICROSOFT 80T17 FORTRAN-IV Page 94

APPENDIX B

I/O Inter face

Input/Cutput operations are table-dispatched to the
driver routine for the proper LorTical Unit Nunber. $t,Ul{fg
is the dispatch table. It contains cne 2-byte driver
address for each possible LUN. It also has a one-byte entry
at the beginning, which contains the maximum LUN plus one.
The initial run-time oackage provides for IA LUN's (I IA),
all of whicn correspond to the TTy. Any of these rnay be
r e<ief ineci by tne user , or more added , simply b1z chanq ing the
appropriate entries in SLUNTts and adding more orivers. The
r untime system uses LUN 3 for errors and other user
communication. Therefore, LUN 3 should correspono to the
operator console. The initial structure of $tuNrs is shown
in the listings following this appendix.

The device drivers also contain local dispatch tables.
Note that $LUNTB contains one address for each device, yet
there are really seven possible operations per device:

1) Formatted Read
2) Formatted Wr i-te
3) Binary Read
4) Binary Write
5) Rewind
6) Backspace
7) Endfile

Each device driver contains up to seven routines '1'n e
starting adcresses of each of these seven routines areplaceo at the beginning of the driver, in the exact order
listed above. The entry in $LUNTB then points to this 1ocal
table, and the runtime system indexes into it to get the
ado.ress of the appropriaLe routine to handle the requested
I,/O oper ation .

The following conventions apply to the individual- T/O
r out ines :

Location $ef contains the data buffer
READs and WRITEs.

add ress fo rI.

2. For a WRITE, the nurnber of bvtes
location SBL.

For a READ, the number
returned in SBL.

to wr ite IN

of bytes read should be

MICROSOFT 8g8O FORTRAN-IV Page 95

All I,/O operations set the condition codes before
exit to indicate an error condition, end-of-file
condition, ot nornal return:

a) CY=l, Z=donrt care I/O error
b) CY=A, Z=0 end-of-file encounlered
c) CY=O , Z=I normal return

The runtime system checks the condition codes after
calling the driver. if they luoicate a non-normal
condition, control is passeo to the label specified
by "ERR=" or "E\D=" or, if no 1abel is specifiei, a
fatal error results.

5. $IOERR is a global routine which prints an "ILLEGAL
r/o OPERATroli" message (non-fatal). This routine
may be used if there are some operations not
allowed on a par ticular device (i.e . Binary I,/o on
a TTY).

NOTE

The I/O buffer has a fixed maximum length
of I32 bytes unl-ess it is changed at
installation time. If a driver a1lows an
input operation to write past the end of
the buf f er , essential runtiine var iables rnay
be affec ted . The conseguences are
unpredictable.

4.

The Iistings following this
d r iver fo r a TTY. RElniIr\D,
implemented as No-Ops and Binary
the TTY oriver provided with the

append ix conta in
BACKSPACE, and

T/O as an error.
runtime package.

an example
ENDFILE are

ml. i ^ i ^I iI I J I 5

MACBO I.O

ga00 *

0g0a
b0ag
IE

OAggli

0gL5
gg

s0sq

aa23 t'
flD

BAaT|i I

gagL *

ag3r *

gLlga i
66249
0030s
09468 IRECER.
0g5qgga60s $oqv3:
00i(tg
a08q,a
089q9glasg
gLTAO
0t2aggL3gO DRV3EN:
9L400
AL5OL DRV3T{E
ALSAT DRV3BA
aLiqq
AIBOA DRV3BW:
bL9ga
AzgfrA DRV3BRg27gg DRV3FR:
0220sa23sg DRV31:
424b0
02540
026A0
92790
028A0
029A9
03099g3rsq
032q9
633s9
43440
w50a
a36Ag
03i06
g38ss
g39Ag
g4ag0
64IA0
q4209
043fr6
64400
04500
g46gg
AAigA DRV3FW:
44804

TIY T/O DRIVSR

$IOERR, $tsL, S3F, $ERR, $ITYI}], SffYUI'O22 ; INPrll RffORD T@ i.ONG
SDRV3
DRV3FR ;F0R|.1A'IIED REAI)
DRV3${ ;FORIAIIED I/, IIE
DRV3BR ;BL\ARY Rtr.\D
DRV3BW ;BTJ,ARY I\IRITE
DRV3RE ;F3.rJIrlD
DRV3BA ;BACi€FACE
DRV3EN ;f.ITDFILEA

'THESE
OPERATIONS ARE

;i\O{PS FOR TfY
DRV3gN
DRV3EN

SIOERR'ILLEGAL OPERATIONS
; (PRINT ERROR .qND .R.gfURli)

gab0
60r2
gas0
0gga
0gg2
0904
g0g6
0aa8
0agA
0ggc
ag0E

ag0E
gg0E
ggaF
0bL0

ggr3 'gg42 ,

garg t

bgLg '
Lggg I

Lgg\ 'gaTE I

tu-

EXI
EOJ
ENIRY
D|{f
DrrI
DW
DW
DW
Di^l
DW
XRA

EDIJ
tr\r I

RET
Ji'lP

*
*

I

*

c9
c3

AF
32
CD
LO
FE
CA
F5
?A
25
EB
?A
I9
EI
13
EB
22
FE
c8
7D
FE
DA

L2
AF
c9
]A
Bi

0LLa
aaI3gar4
agIT
AAIAgalc
O@TE
a02l
aa22
ga25
ag2i
4028
gg2B
002c
gg2D
a62E
0gz|
ag30
9633
0035
4036ga3i
ag39gs3c
ba3F
0040
9041
gg42
ag45

r1u
xliA
STA
CALL
ANI
CPI
JZ
PUSH
LHI,D
Fnn
XCHG
LHLD
UAU
POP
MOV
INX
XCHG
SHLD
CPI
RZ
!tov
CPI
JC
CAI,L
DB
XRA
RET
I,DA
ORA

DRV3BW

$eL
STTYINgI77
M
DRV3l
PS"{
FgL
Hra

$ar
D
PSW
M'A
D

;RE\D
;ZERC BUFFffi. tEt{gIH
;II'IPUI A CHAR
;Ai{D OFF PARITY
;IG']CRE LINE FEEM

;SAVE IT
;GET CII\R PCSIT IN BUFFER
;OIJLY 1 3!TE

;GET BLIFFER ADDR
.lnf) C)F F SF*'lr
t.tvu vr \euL.ctrT r-Hlp
, v!r v.! rr\

;PIJT IT lN 3UFFR.
;INCRDT1ENI $BL

$BL ;SAVE ITAL5 ;CR?
;YES--DNEA,L ;SBLI2B ;i'lAX TS DECIII\L 128

DRV31 iCer nnxr cHeR
SERR
IRECER ;INPTJT RrcORD TOO IONG
A ;CLEAR FIAGS

$SL
'BUFFM.

LENGIH
A

,4.

MAC80 1.0

ga29 *

OD
cagg

z,a
Atti9
3l
4864
ric
frg|F
g{Ji9
gA
bA5r-

2g
0't79
3f4
aai9
OA
bfr67

aaTi *

gaTB I

MAC80 I.0

DR3FW1:

DR3F\{2:

DRV32:

3

$BF
IRECER
DRV38R
DRV3EN
DRV32

.SSF'
A
FSW
A,13
smvor
A, !t,+l
DR3Ffd2,1'
DR3FWI
A,12
STIYOT
DR3Fi^I2
A,10
gflIYOI
+,11
DR3FW2
'6',

DR3FI^12
A,16
s11n0I
PSW
rt

PSi{
A,ltl
H
STTYOI
PSW
n
DRV32

I

I

*

ag46 cBgJ47 2A
t:l4A 3D
b64.3 F5a$4c 3E
,J l4E CD005] 7E
'd352 FB,tJ54 CAqo51 FE(059 C2frbT. 3EgA5E CDai6r c3b064 3E
4666 CDafi69 7E
b(J6A FE
086C CAgO6F FElgiL c2aa74 3E00i6 cD0(-fi9 FlgDiA 23gaiB c8'lIic F5
asTD 7E
atig 23007F cDgdgz Fl
9"J83 3D0084 c3
q08,7

t494fr
05baa
s51A0
fr5249
053(r0
fi5400
055q9
456.1j0
95i08
f)58(,Jg
459s0
a66Ag

, g6ls0
a52gg
06360
t'64401
4650/j
s66AA
a67(t0
At68go
g69A(t
siaag
fliIfig
'a72ga
a73As
ai4ga
67590
0i6agg7i0g
ailsfr
ai90g
gga00
gBT\A
08299

RZ
LHLD
DCR
PUSH
M\TI
CALt
MCV
CPI
JZ
CPI
Jllz
M\rI
CALL
Ji4P
I.{VI
CALL
MOV
CPI
JZ
CPI
JNZ
IlVI
CALL
POP
INX
w
PUSH
MOV
INX
CALL
POP
DCR
JI.1P
END

;EMFTY BUFt'gR
;BUFFM. ADDR.ESS
;DECI{-E"1EIII LffNGIA
;SAVE IT.1^P
.NTTTDIIT TfF
,vv4 t vr

;GET FIRST CriA'D, ni BUFFF.R

;NO LINE FEEDS

;NCII FOI?|4 FEED
; FOIii4 FEED
;OUIRIT Ir
;LF

;GET CFIAR BACK

;NO IvIORE LINE FEEDS

;NO I4ORE LINE FEEDS
;LF

;GET LElrfIH B-ACK
;INCREIISVI PIR

;SAVE CIIAP. CO-IJNT
;GET I'IEXT CI1AR
;INCRR'IIIVI PJR.
;OUIPL|f CII\R
;GET COO.II
;DEClttr{ENI IT
;ONE llOllE TIME

SIOERR 0OLL*Srrvtu ool8*
DRV3FR g613'
DRV3RE ggAE,
DR3F|^12 9079'

sBL ga43*
STI'YOI 7ABA*
DR\'Z3F"'/'l Dg42'
DRV3BA ggAE'
L)R3t"i{l 9664'

6fr48*gaI2
6grg'
00aE'
0078'

$Enn
SDRV3
DRV3BW
DRV3l

a03D*g0g0'
0g16'
UOLT I

I'1AC80 1 .0 PA@

ila
A,toa *

agag

0aIt
a0g5

a6ai *

q00a
gggB
tt0gD
aaTF
agL!

MAC80 1.0 PA@

OOOL DSK AAAT
60a9* LFTDRV 0903*

1

.anVMF"i\TF *
, vv! ! r.4tr

FOR N1CW

$t'1frI
gg20?'
0g2Iq
ga22g
frv234
00235
00244
ttt 3:J0
044frL
9i05e$
a06ga

asTgg
60B',da
gggag
g,-IAgg
STLAg
612ss
0!3Ag)
grAsg
gt5b0
flI5ts
grSga
9r602gt6s4
aI605
g16g6
aI6g8
UT7?Jg
AIBOA
0I9il0
a2sgt4
azlAA
42200
92340
92400
g25ga
62699g2i0a
62844
6290s
a3as6
93100
03286
a3300

DRIVEF{

EQU
EQU
EQU

ADDRSSSES FOR L[.]"!{'S 1 TFI'.fOUC+{ 10

'UNIT
2 IS LPI

rtlitiTs 6-lr,J ARE DSK
;E'C CO't''1U'IICATIONS tl'lIl 4

0agI
aasr
cafiil

3qg1
t t;.''1rfuirr,
au)c'l
bODL
0bg3

lsr
DSK
trfc

ENIRY
E,YI

$l,uisrg: ns
Di{, IFF
DW
BNDIF
IFT
EXI
DW
ENDIF
Dltr
IFF
DW
ENDIF
IFT
ErI
DW
ENDIF
DW
IFF
DW
Dhl
DW
Di'I
UW
ENDIF
IFT
EXI
DW
DhI
DW
DW
DW
ENDIF
END

2

DTC g0gg
DSKDRV 6OL3*

I
1l-
U

$LUNIB
$cnv:
al3
SDRV3
LPT
$DRV3

LETI
LPTDRV
LP.IDRV

$DRV3
vrc
SDRV3

t:'lAX Liiii
;THEY ALL POIi.n

+1
TC SDRV3

00s3
gga3
0b'a3
agg3
au5
gga5
A4A1AUU I

0ali
b0fl9
ag09

*

*

*

7r0tt9
,J0a9
gg'tts

mc
$cq
scM

$DRV3
MK
$onv:
$DRV3
$onv:
$DRV3
SDRV3

DSK
MIORV
DSI(JRV
DSKDRV
IJSFDRV
EKDRV
MKDRV

DRV
Di].V

sLtI.rtB a0001

gagts
Aa0{J
E0gts
aggB
aggD
aggF
ATJII
A/tI3gaI5
ggI5

*
*
*
*
*

LFT
$DRV3

MICROSOFT EASO FORTRAN-IV Page 96

APPENDIX C

Subprogram Linkages

This appen<1 ix defines a normal subproqram call as

generateo by the FORTRAN comoiler. It is incluoed to
iac il itate l.inkages betr.reen FORTRAN prog ran: and tirose
wr itten in other la.tguages , such as 8CI 80 Assembly.

A subprogram reference with no pa.rarneters generates a

simple "CALLI instruction. The corresDonding subprogram
should return via a simple "RET." (CALL and RET are 8080

opcodes - See the assembly manuai or SABA reference manual
for explanations.)

A subprogram reference with parameters results in a

somewhat fnore complex calling seguence. Parameters are
il*uy= passed by ieference (i.e. , the thing passed is
actuarry the address of the 1ow byte of the actual
argurnenLl. Therefore, parameters always occupy two bytes
each, E€9ardless of tYPe.

The method of passing the parameters depends
number of Parameters to Pass:

upon the

I. If the number of Parameter
to 3, they are Passed in
I vrill be in HL, 2 in DE (

(if present) .

2. If the number of parameters is greater than 3, ttrey
are passed as follows:

1. Parameter I in HL.

in DE.

through n in a contiguous data
will point to the low bYte of this

i.e., to the low bYte of Parameter

s is less than or egual
the registers. Parameter
if present) , and 3 in BC

2.

3.

Par ameter

Par ameter
block.

block (

s3
BC

data
3).

the subprogram must know
in order to find them.
responsible for Passing
Neither the comPiler ncr

--

Note that, with this scheme,
how many Parameters to exPect
Conversely, the calling Program is
the correct number of Parameters.
the runtirne svstem checks for the correct number of

}lICROSOFT ET'BA FOi{TRAN-IV PaEe 9i

P-egn-gls.r-g.

If the suoprogram expects more than 3 parameterso and
neeos to Lr ansf e r them l-o a 1oca1 data area, there is a
syst-em sl;broutinc which will per f orm this transf er . Tn j s
.ar.tnnrFnt- i-.^nSfi;; rOrrtine iS naned $AT, and i.S Cal1ed rr,iLhe ! 5 u.tr ? r r e

HL poi;rr,inq to;nc Iocal data arca, BC pointing tc Lhc ilrirc'^i-^i- ^ncl A ccntaining the nunber of arquinents tovGr cilui. LgL , d

transfer (i.e., the totar nunber of arguments rninus 2). ThesubprcErarn is responsible for saving the first twoparaneters before calling $at. For exampre, if a subprograin
expects 5 parameters,'it should Look like:

SUBR: SHLD
XCIIG
SHLD
l'{VI
LXI
CALL

ju"uu

RET
DS
DS
DS

P1

P2
A'3
H, P3
$at

of subprog r arll

;SAVE PARAMETER 1

; SAVE PARAI.IETER 2
;NO. OF PARAMETERS LEFT
; POINTER TO LOCAL AP.EA
;TRAI{SFER THE OTHER 3 PARAI4ETERS

P]:
P2:
P3:

i{hen accessing parameter s
that t-hey ar e po inter s to the

;RETURN TO CALLER
; SPACE FOR PARAl,lrTtR I
; SPACE FOR PARAiIETER 2

; SPACE FOR PARAMETER,S 3-5

in a subprogram,
actual arguments

z
2
6

don't forget
passed.

NOTE

It is entirely up to the
programmer to see Lo it that
the arguments in the calling
program match in number, type,
and lenqth with thE parametFs
expected by the subprogram.
Th i s appl ie s to FORTRAn-
subprogramsr dS well as thosewritten in assemblv language.

FOIITIiAN Functjons (Section 9) returnregisters er
.
memory depending '";;; theresults are returned in (a), Integers in

their values intype. Log ical(IlL), Reals in

MICROSOFT 608[4 FORTR.AN-IV

memory at $nC, Dorrble Precision in Inemory
SDAC are thc aodresses of the low bytes of

Page 9B

at $OaC. $AC and
the mantissas.

MICROSOFT BbSA FORTRAN-IV Page 99

CHAR.

V

APPENDIX D

ASCII CHARACTER CODES

DECIMAL

saa
0frL
092
0 9,3
sg4
605
096
0fr7
ss8
a09
aIg
OTI
012
sI3
sI4
015
gr6
aIi
OIB
479
629
02r
s22
923
024
625
026
027
928
429
930
03r
032
433
034
435
036
937
038
039
040
b4L
s42

CHAR.

I'iUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
I,F
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
UL. &}

iiIAK
SYN
ETB
CAN
EI"1

SUB
ESCAPE
FS
GS
RS
US
SPACE
!
rl

JIIt

$
t
&
I

(

)
*

DEC IMAL

943
444
445
s46
a4j
a4B
949
s5a
s5I
952
053
954
955
a56
957
058
059
466
06r
a62
063
064
665
066
967
068
069
gi0
07I
0i2
0i3
gi4
975
076gii
a7B
079
s8g
081
s82
083
gtB4

085

CFIAR.

+
,_

g

1
2
3
4
5
6
i
I
9

i

?
@

A
B

c
D
ti
F
g

H

I
J
K
L
I\,1

N
o
P

0
R
S
T
U

DEC Ii4AL

986
v|J/
088
s89
a9a
g9r
s92
993
994
s95
996
a97
g98
099
rafr
101
IA2
103
Is4
I05
I06
Igi
108
IA9
110
I]I
TT2
lr3
114
115
116
ll7
118
119
L20
T2T
r22
I23
L24
I25
I26
72r

(ort)
(or <-;

w
x
Y
z
tt

I)

I

ct

b
c
d
e
t
g
h
i
i
k
I
m

n
o
p
Y
r
S

t
u
v
w
x
v
z
(
t
I

)l

DE[,

LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

MICROSOFT 8A8O FORTRAN-IV Page I0g

APPENDIX E

DISK FiLE ACCESS

FORTRAN-30 provides the capabiliLv of disk fil-e access
v ia FORTRAN programs. Log ical Unit Nunber s 5-lg are
preassigned to d isk f iles. A READ or WP.ITE to an LUN
automaiically OPEbls the file for inpuL or output
respectively,' Lf it is not already open. The file remains
open until closed by an ENDFILE cornmand or until norinal
program termination. A file that is OPENed by a READ or
WRITE statement has a default name that oepends upon the
operating system:

CPM and
ISIS IT:

ALTAIR:

DTC:

Filename = an ASCII narne which
will assoc iate with the file.
Holl-er ith or Literal constant, or a
where the variable or array conta
Filename should be blank fiIled to
characters allowed by the operating

FORT06.DAT, FORTo7.DAT,..., FORTl0.DAT

FOR06DAT, FOR0TDAT , ... , FORl0DAT

FORS6D, rORo7D,..., FOR10D

fn each case the LUN is incorporated into the oefault
name.

file

Alternatively, a f i1e may be CpENed using the OpEi:l
subroutine. LUNs 1-5 may arso be assigned to disk fires
with OPEN. The form of an OPEN call is:

CALL OPEN (LUN, Filename, Drive)

wher e :

LUN = a Logical Unit Number to be associated vrith the
f ile (must be an integer , constant or var iabl.e with a value
between 1 and IA).

CPI'l:

ALTAIR:

DTC:

ISIS II:

11 characters

8 characters

the operating system
The Filenaine should be a
variable or array name,
ins the ASCII name. The
exactly the number of
system:

6

6
a

characters

characLers followed by a ,!.,,
3-character extension

followed bv

I"IICROSCFT 8A8$ FORTRAN-IV Page IA7

Drive = the num.ber of the disk dri.ve on which the fiLe
exists or wiil exist (must be an integer, constant or
variable within the range alloweci by the operating system).
If the orive specif ieci is (!, the currently sel"ected drive is
assumed; 1 is cirive 0 (or A) , 2 Ls drive 1 (or B) , etc.

The OPEN subroutine allows the program to specify a
filename and clevice to be associateo with an LUN, whereas
the def ault spec if ies a oef ault name and uses +-he cur rently
sel.ected disk drive.

An OPEIi of a non-existent file creates a nuIl file of
the appropriate name. An OPEN of an existing file followed
by an output deletes the existing file. An OPEN of an
existing file followed by an input allows access tc the
current contents of the file.

The ENDFILE and REWIND commands aIlow further program
control of disk fiIes. The form of the commands is:

ENDFILE L oT REWIND L

where L is an LUN. ENDFILE L closes the file associated
with LUN L. REWIND L cl-oses the file associateo with LUN L,
then opens it again.

NOTE

Exercise caution when
outputting to d isk f iles. If
output is done to an existing
fiIe, the existing file will
be deleteo and replaced with a
new file of the same name.

MICROSOFT 8O8D FOR,TRAN-IV Page Ig2

INDEX

Ar ithmetic ixPres.sion 23'24, 45
Ar ithnecic IF 42, 45, 4i
Arithmetic OPeraLors - 7

Array 12, 18, 32-33, 35-36, 38-39 '54, 75, E4-85, 89-99
Array Declarator . 1B
array Element L2, 18, 25, 30, 3i
ASCII Character Codes 99
ASSTGIi 42, 44
Assigned GOTO 42-43

BACKSPACE 5i
BLOCK DATA 32, 35, 86, 91

CALL . 42, 51 ' 87
Character Set 6

Chara,cteristic 2l
coi.l}lori 32, 35-35, 38-39' 84, 86,

9l
ComPuted GOTO 42'43
Constant . I2-I3
Continuation B-9
CONTINUE . 42, 49
Control Statements 42

DATA . 32, 39, 84, 86, 91
Data Represelltation 12
Data Storirge 19
Decode 5i
DTMENSTON IB, 32, 35, 91
Disk . IAA
DO 42, 45-4i
DO Implied List 59
Double precision L2
Dummy 86-87 ' 89-9A

Encode 5i
END . 51, 84, B7 , 91
ENDFILE . 57
Endfile . Lg6
EQUTVALENCE . 32, 36-39, 84, 85 ' 91
Executable 11' 32, 42
Expression 23, 29-34
Extended Range 48
EXTERNAL . 32, 34, 85, 88
External Functions 82

FORMi\T
Formatted READ 52
Forrnatted WRITE 55

FUr\CTION

GOTO

Heraci ec imal
HoLler itlr

T/dL/ v
L/U .l,rst
IF
Index
I r\P
Integer .
I ntr insic Funct ions

Label
Library Iunction
Line Format .
Literal
r na i a -'iuvY ruqr
Logical Expression
Logical IF
Logical Operator
Logical Unit Number
LUN

Manti ssa

NE SLed
Non-exec5 tabl e

Open
Ope r and
Cperat-or
r'Iil.FvvI

PAUS E
PEEK
POKE
PROGRA}1

Range
READ
ReaI
Re 1 at ional
Relat ional
RepI ac emen t
RETURN
REWIi\D
Rewind

Scale Factor.
Spec j-f ication Statement
Staterilent Function
STOI,
S to'

. 32, 35, 7i, 83-88, 9g

42, 47

19, 29,
8, f3,
66, 68,

52, 94
5 r']

4a
1B-19,29, 40,54,

85

42 , 1,5
A-2r

8A
12, 17 , 2r
Bt.

B, Ifr, 42-43 , 46
ii, 19
B

8, 1E-19, 29, 4A, 68, 85
f2,)i , 2r, 69
25, 28, 45
42, 45, 4i
26
52, 56, 94
52, 56, 94

2T

49
11, 32

Tfrg
23
23
80

42, 47 , 5g
BO

8g
32, 78, g6

47
54 , 56,
12, ri ,
25-26
zo
3A, 45
42, 47 ,
57
101

6I, i0, 73-76
2I

51, 94, 96, gB-Bg

.70

.32

. 32, 7i-78

. 42, 47, 5g.33

.12Cia r+ ^ rr vtfllclL .Stor

