FORTRAN-80 User's Manual’

Copyright (C) 1977 by Microsoft

Microsoft FORTRAN-80 User's Manual Page 2

FOREWORD

This manual decscribes the use of the FORTRAN-88 compiler and
associated software under the CP/M, DTC Microfile, Altair
DOS or ISIS-II Disk Operating System. Refer to the
FORTRAN-8¢ manual for an extensive description of FORTRAN
syntax and semantics.

Microsoft FORTRAN-38 User's Manual Page 3

Table‘of Contents

Section
1 Compilihg FORTRAN Programs
1.1 The FORTRAN-380 and MACRO-88 Command Scanner

l1.1.1 Format of Commands
1.1.2 FORTRAN-30 Compilation Switches

1.2 Sample Compilation

1.3 FORTRAN-80 Compiler Error Messages
2 Linking FORTRAN Programs

2.1 The LINK-88 Command Scanner

2.1.1 Format of Commands
2.1.2 LINK-89 Switches

2.2 Sample Link
2.3 Format of LINK-80 Compatible Object Files
2.4 LINK-80 Error Messages
3 The MACRO-80 Assembler
3.1 Format of MACRO-30§ Commands

3.1.1 MACRO-80 Command Strings
3.1.2 MACRO-80 Switches

3.2 Format of the MACRO-80 Source File

3.3 Assembler Features

3.3.1 Names

3.3.2 Constants

3.3.3 Labels

3.3.4 Operators

3.3.5 Address Expressions
3.3.6 Remarks

3.3.7 Statement Form

3.4 Pseudo Operations

Define Byte

Define Character
Define Space

Define Word

Program Termination

Wwwww
L] L] L] L] []
Lo - -
. L] L] . .
U1 W N =

Microsoft FORTRAN-80 User's Manual

Terminated Conditional Assembly
Define Entry Points

Define Equivalence

Define External

False Conditional Assembly
True Conditional Assembly
Define Origin

Page Break

Set

Title

. e o @ . o
« e . . o

b b B B B B

WWwWwwwwwww
. L] . L]

[l el sl o B V=T BEN BYo)
WS

3.5 Notes
3.6 Sample Assembly

3.7 MACRO-80 Errors

4 FORTRAN Runtime Error Messages
5 Operating Systems
5.1 CPM

5.2 DTC Microfile
5.3 ALTAIR DOS

5.4 ISIS-II

Page 4

Microsoft FORTRAN-88 User's Manual Page 5

SECTION 1

Compiling FORTRAN Programs

1.1 The FORTRAN-80 and MACRO-80 Command Scanner

1.1.1 Format of Commands

FORTRAN-80 and MACRO-88 general commands are as
follows:

objprog-dev:filename.ext,list-dev:filename.ext=
source-dev:filename.ext

objprog-dev:
The device on which the object program is to be
written.

list-dev:
The device on which the program listing is written.

source-dev:

The device from which the source~program input to
FORTRAN-88 or MACRO-80# is obtained. If a device
name is omitted, it defaults to the currently
selected drive.

filename.ext

The filename and filename extension of the object
program file, the 1listing file, and the source
file. Filename extensions may be omitted. See
Section 5 for the default extension supplied by
your operating system.

Either the object file or the listing file or both
may be omitted. If neither a listing file nor an
object file is desired, place only a comma to the
left of the equal sign. If the names of the object
file and the listing file are omitted, the default
is the name of the source file.

Examples:

A>F84
*=TEST Compile the program TEST.FOR

and place the object in TEST.REL
*,TTY:=TEST Compile the program TEST.FOR

and list program on the terminal.
No object is generated.

*TESTOBJ=TEST.FOR Compile the program TEST.FOR

Microsoft FORTRAN-88 User's Manual Page 6

and put object in TESTOBJ.REL

*TEST, TEST=TEST Compile TEST.FOR, put object in
TEST.REL and listing in TEST.LST

* ,=TEST.FOR Compile TEST.FOR but produce

no object or listing file. Useful
for checking for errors.

FORTRAN-80 Compilation Switches

A number of different switches may be given in the
command string that will affect the format of the
listing file. Each switch should be preceded by a
slash (/):

Switch Action

0 Print all listing addresses, etc. in
octal. (Default for ALTAIR DOS)
Print all listing addresses, etc. in
hexadecimal.

(Default for non-ALTAIR versions)

Do not list generated code.

Force generation of an object file.
Force generation of a listing file.
Each /P allocates an extra 180 bytes
of stack space for use during
compilation. Use /P if stack over-
flow errors occur during compila-
tion. Otherwise not needed.

s o]

ol i -

Examples:

* TTY:=MYPROG/N Compile file MYPROG.FOR and list
program on terminal but without
generated code.

*=TEST/L Compile TEST.FOR
with object file TEST.REL and
listing file TEST.LST

*=RIGGONE/P/P Compile file BIGGONE.FOR
and produce object file BIGGONE.REL.
Compiler is allocated 200 extra bytes
of stack space.

Microsoft FORTRAN-88 User's Manual

1.2

A>F80

Sample Compilation

*EXAMPL, TTY: =EXAMPL

FORTRAN-80 Ver. 2.3 Copyright 1977

(C) By Microsoft - Bytes: 4524

08100 PROGRAM EXAMPLE
pR20@ INTEGER X

0Qa309 I = 2%%8 + 2%%9 4+ 2%%x]gp
p0460 . DO 1 J=1,5

* Kk ok k 6980 LXI H,07080

* koK k% ego3" SHLD I

80500 C CIRCULAR SHIFT I LEFT 3 BITS -- RESULT IN X
00680 CALL CSL3(I,X)

* kok k% ga06" LXI H,0001

* ok ok ok ok pBp9 SHLD J

00700 WRITE(3,10) I,X

* %ok ok % goaec! LXI D, X

* ok k ok k goagr? LXI H,I

*okkokok 2912 CALL CSL3

*kkkox 8@15" LXI D,18L

*xkkk £018" LXI H, [83 0a]
*kkkk 218" CALL SW2

860800 1 I=X

* Xk k% O1E" LXTI B,X

* ok ok ok ok @21 LXI D, I

*kkokk gB24" LXI H, [g1 28]
* k& ok 027" MVI A,03

* %k ok ok 9029" CALL $10

kkkk ok go2c! CALL SND

0999 10 FORMAT (2115)

*kkkk BAZF" LHLD X

*ok ok ok ok 8032 SHLD I

*kokkok B@35" LHLD J

*kkkk 0p38"! INX H

* Ak Kk 6339 MVI A,0Q

*kok ok ok 2038 SUB L

* ok ok k% 803C! MVI A,0Q

*okkx ok B03E’ SBB H

kkkkk Q83F" JP 0009

01299 END

* Kok ok ok 90042° CALL SEX

*kk k% a0B45" 6100

kA kkk 2047 8300

Program Unit Length=pg49 (73) Bytes

Data Area Length=0800D (13) Bytes
Subroutines Referenced:

$10 , CSL3 Sw2

SND $EX

Microsoft FORTRAN-8# User's Manual Page 8

variables:

X eoo1"
LABELS:

1L 0o2F"
*"C

A>

See section 3.6 for

CSL3.

I Y TER g gopa5"

1L 627"

a listing of the MACRO-89 subroutine

Microsoft FORTRAN-88 User's Manual Page 9

1.3

FORTRAN Compiler Error Messages

The FORTRAN-88 Compiler detects two kinds .of
errors: * Warnings and Fatal Errors. When a Warplng
is issued, compilation continues with the next item
on the source line. When a Fatal Error is found,
the compiler ignores the rest of the logical line,
including any continuation lines. Warning messaqges
are preceded by percent signs (%), and Fatal Errors
by gquestion marks (?). The editor line number, if
any, or the physical line number is ©printed next.
It is followed by the error code or error message.

Example:

?Line 25: Mismatched Parentheses

tLine 16: Missing Integer Variable

When either type of error occurs, the program
should be changed so that it compiles without
errors. No guarantee is made that a program that
compiles with errors will execute sensibly.

Fatal Errors:

Error Message

Number

100 Illegal Statement Number

101 Statement Unrecognizable or Misspelled
192 Illegal Statement Completion

143 Illegal DO Nesting

104 Illegal Data Constant

105 Missing Name

106 Illegal Procedure Name

187 Invalid DATA Constant or Repeat Factor
108 Incorrect Number of DATA Constants
189 Incorrect Integer Constant

110 Invalid Statement Number

111 Not a Variable Name

112 Illegal Logical Form Operator

113 Data Pool Overflow

114 Literal String Too Large

115 Invalid Data List Element in I/0
116 Unbalanced DO Nest

117 Identifier Too Long

118 Illegal Operator

119 Mismatched Parenthesis

120 Consecutive Operators

121 Improper Subscript Syntax

122 Illegal Integer Quantity

123 Illegal Hollerith Construction

124 Backwards DO reference

Microsoft FORTRAN-80 User's Manual Page 10

125
126
127
128
129
130

131
132
133
134
135

Illegal Statement Function Name
Illegal Character for Syntax

Statement Out of Sequence

Missing Integer Quantity

Invalid Logical Operator

Illegal Item Following INTEGER or REAL or
LCGICAL

Premature End Of File on Input Device
Illegal Mixed Mode Operation

Function Call with No.Parameters

Stack Overflow

Illegal Statement Following Logical IF

Warnings:

o~JoaounmbdbwnhnH®

Duplicate Statement Label

Illegal DO Termination

Block Name = Procedure Name

Array Name Misuse

COMMON Name Usage

Wrong Number of Subscripts

Array Multiply EQUIVALENCEd within a Group
Multiple EQUIVALENCE of COMMON
COMMON Base Lowered

Non-COMMON Variable in BLOCK DATA
Empty List for Unformatted WRITE
Non-Integer Expression

Operand Mode Not Compatible with Operator
Mixing of. Operand Modes Not Allowed
Missing Integer Variable

Missing Statement Number on FORMAT
Zero Repeat Factor

Zero Format Value

Format Nest Too Deep

Statement Number Not FORMAT Associated
Invalid Statement Number Usage

No Path to this Statement

Missing Do Termination

Code Output in BLOCK DATA

Undefined Labels Have Occurred
RETURN in a Main Program

STATUS Error on READ

Invalid Operand Usage

Function with no Parameter

Hex Constant Overflow

Division by 2Zero

Array Name Expected

Illegal Argument to ENCODE/DECODE

Microsoft FORTRAN-88 User's Manual Page 11

2.1

2.1.1

2.1.2

SECTION 2

Linking FORTRAN Programs

The LINK-80 Command Scanner

Format of Commands

Each’command to LINK-88 consists of a number of
filenames and switches separated by commas:

objdevl:filename.ext/switchl,objdev2:filename.ext,.

If the input device for a file is omitted, the
default 1is the currently logged disk. If the
extension of a file is omitted, the default is
.REL. After each line is typed, LINK will load or
search (see /S below) the specified files. After
LINK finishes this process, it will 1list all
symbols that remained undefined followed by an
asterisk.

Example:

A>LINK
*MAIN
SUBR1* (SUBR1 is undefined)
*SUBR1
*/G (Starts Execution - see below)

Typically, to execute a FORTRAN program and
subroutines, the user types the list of filenames
followed by /G (begin execution). If the FORTRAN
programs require any FORTRAN Library routines, they
will be satisfied automatically by searching
FORLIB.REL before execution begins. If the user
wishes to first search 1libraries of his own, he
should append the filenames that are followed by /S
to the end of the loader command string.

LINK-80 Switches

LINK-80 has a number of switches that specify

acFions affecting the loading process. These
switches are:

Switch Action
R 3e§e§. Put loader back in its
lnitial state. Use /R if you

loaded the wrong file by mistake

Microsoft FORTRAN-88 User's Manual Page 12

and want to restart. /R takes
effect as soon as it is encountered
in a command string.

E or E:Name Exit LINK-8@ and return to the
Operating System. FORLIB.REL will
be searched on the current disk to
satisfy any existing undefined
globals. The optional form E:Name
(where Name 1is a global symbol
previously defined in one of the
modules) uses Name for the start
address of the program. Use /E to
load a program and save the memory
image.

G or G:Name Start execution of the proaram as
soon as the current command line
has been interpreted. FORLIB,REL
will be searched on the current
disk to satisfy any existing
undefined globals if they exist.
Before execution actually begins,
LINK-88 prints three numbers and a
BEGIN EXECUTION message. The three
numbers are the start address, the
address of the next available byte,
and the number of 256-byte pages
used. The optional form G:Name
(where Name 1is a global symbol
previously defined 1in one of the
modules) uses Name for the start
address of the program.

U List all undefined globals as soon
as the current command 1line has
been interpreted.

M Map. List all defined globals and
their wvalues, and all undefined
globals followed by an asterisk.

S Search the filename immediately
preceding the /S 1in the command
string to satisfy any undefined
globals.

Examples:

*/M List all globals

*MYPROG, SUBROT ,MYLIB/S
Load MYPROG.REL and SUBROT.REL and
then search MYLIB.REL to satisfy
any remaining undefined globals.

Microsoft FORTRAN-88 User's Manual

2.2

2.3

Page 13

*/G Begin execution of main program

Sample Link

A>L80d
*EXAMPL,EXMPL1/G
[304F 39AC 49]
[(BEGIN EXECUTION]

1792 14336
14336 -16383
-16383 14
14 112

112 896

A>

Format of LINK Compatible Object Files

NOTE

Section 2.3 is reference material for users
who wish to know the load format of LINK-83
relocatable object files. Most users will
want to skip this section, as it does not
contain material necessary to the operation
of the package.

LINK-compatible object files consist of a bit

stream. Individual fields within the bit stream
are not aligned on byte boundaries, except as noted
below. Use of a bit stream for relocatable object

files keeps the size of object files to a minimunm,
thereby decreasing the number of disk reads/writes.

There are two basic types of load items: Absolute
and Relocatable. The first bpit of an itenm
indicates one of these two types. If the first bit
is a @, the following 8 bits are loaded as an
absolute byte. If the first bit is a 1, the next 2
bits are used to indicate one of four types of
relocatable items:

1) Special LINK item (see below) .

81 Program Relative. Load the following 16
bits after adding the current Program
base.

10 Data Relative. Load the following 16

bits after adding the current Data base.

Microsoft FORTRAN-88 User's Manual Page 14

11 Common Relative. Load the following 16
bits after adding the current Common
base.

Special LINK items consist of the bit stream 1880
followed by:

a four-bit control field

an optional A field consisting
of a two-bit address type that
is the same as the two-bit field
above except 80 specifies
absolute address

an optional B field consisting
of 3 bits that give a symbol
length and up to 8 bits for
each character of the symbol

A general representation of a special LINK item is:

1 20 xxxx vy zzz + characters of symbol name
A field B field

XXXX Four-bit control field (6-15 below)

YY Two-bit address type field

222 Three-bit symbol length field

The following special types have a B-field only:

Entry symbol (name for search)
Select COMMON block

Program name

Reserved for future expansion
Reserved for future expansion

B wWN -~

The following special LINK items have both an A
field and a B field:

5 Define COMMON size

6 Chain external (A is head of address chain,
B is name of external symbol)

7 Define entry point (A is address, B is name)

8 Reserved for future expansion

9 Reserved for future expansion

The following special LINK items have an A field
only:

10 Define size of Data area (A is size)

Microsoft FORTRAN-80 User's Manual

Page 15

11 Set loading location counter to A

12 Chain address. A is head of chain,
replace all entries in chain with current
location counter.
The last entry in the chain has an
address field of absolute zero.

13 Define program size (A is size)
14 End program (forces to byte boundary)
The following special Link item has neither an A nor
a B field:
15 . End file
2.4 LINK-80 Error Messages K

LINK-88 has the following error messages:

?No Start Address

?Loading Error

?Fatal Table Collision
?Command Error

?File Not Found

A /G switch was issued,
but no main program
had been loaded.

The last file given for input
was not a properly formatted
LINK-80 object file.

Not enough memory to load
program.

Unrecognizable LINK-88
command.

A file in the command string
did not exist.

$2nd COMMON Larger /XXXXXX/

The first definition of
COMMON block /XXXXXX/ was not
the largest definition. Re-
order module loading sequence
or change COMMON block
definitions.

$Mult. Def. Global YYYYYY

More than one definition for
the global (internal) symbol

YYYYYY was encountered during
the loading process.

Microsoft FORTRAN-80 User's Manual Page 16

3.1.1

3.1.2

3.2

3.3.1

SECTION 3

The MACRO-80 Assembler

Format of MACRO-80 Cominands

MACRO-80 Command Strings

The format of MACRO-88 command strings is identical
to the format of FORTRAN-88¢ command strings. See
section 1.1.1.

MACRO-88 Switches

MACRO-84 Switches are the same as FORTRAN-80
switches except that /P, /N and /0 have no effect.
See section 1.1.2.

Format of MACRO-88 Source Files

In general, MACRO-80 accepts a source file that 1is
almost identical to gsource files for INTEL
compatible assemblers. Input source lines of up to
132 characters in length are acceptable.

The assembler outputs a module name to the 1loader.
This module name consists of the first six
characters of the title if a TITLE statement 1is
included. 1f no TITLE statement is included, the
module name is made from the file name.

Assembler Features

The features of the MACRO-80 assembler are
described briefly below.

Names

All names are 1-6 characters. The first character
is an alpha character (A-2Z) or $. The remaining
characters are alphanumeric (A-%Z, @-9) or $. Names
followed immediately by two number signs with no
intervening blanks (e.g. NAME##) are classified as
external. This type of name is an alternative to
the program statement

EXT NAME
or
RYmDM o I ME

-
Microsoft FORTRAN-8@ User's Manual Page 1

303.2

3.3.3

3.3.4

3.3.5

Constants

a. Decimal: Numbers consisting of dec%mal
digits and having no leading =zero.
The allowable range is 65535 to
-65535.

b. Octal: Numbers consisting of octal digits
and having a leading =zero or a
trailing Q or O. The allowable
range is 0177777 to -0177777

c. Hex: Numbers consisting ¢f one to four

hexadecimal digits and having the
form x'hhhh'. One-digit or three-
digit values are treated as though
zero were to the left (i.e., X'A'

and X'BA' are the same). The
allowable range is X'FFFF' to
-X'FFFF'. Numbers consisting of

from one to four hexadecimal digits
immediately followed by the suffix
B (e.g., hhhhH) are also allowed.

d. Character: One or two ASCII characters
preceded and followed by guotation
marks (i.e., "a" or “BC" or 'BC').
The delimiters may be ejther single
quotes (') or double gquotes ("),
but the starting and end delimiters
must be identical. Whenever one
type of quote is used as a
delimiter, the other type of guote
is allowed as a character.

Labels

A label is a name that does not contain an imbedded
space and is terminated by a colon (:). Labels
must begin in column 1 and all names beginning in
column 1 will be interpreted as labels.
Consequently, opcodes and pseudo-ops cannot begin
in column 1. Labels alone on a 1line with no
further opcode or pseudo-op are allowed.

Operators

An operator consists of an 888¢ mnemonic or one of

the pseudo-operations described in Section 3.4,

Address Expressions

Microsoft FORTRAN-80 User's Manual Page 18

3.4.

1

An address expression consists of a name or a
constant or an address expression + Or — an address
expression. An address expression uses the current
assigned address of a name or the 16-bit value of a

constant to form a 16-bit value which, after the
expression 1is totally calculated, is truncated to

the field size required by the operator. Operator
precedence during expression evaluaticn 1is 2s
follows:

Parenthesized expressions
*, /, MOD, SHL, SHR

+, - (unary and binary)
Logical NOT

Logical AND

Logical OR, XOR

An expression may not contain any 1mbedded Dblanks
(except those appear ing inside character
constants) . An expression is terminated Dby a
semicolon or a tab.

Remarks

A remark is indicated by a statement whose first
character is a semicolon (;) (in which case the
whole statement is a remark), or by any characters
following the end of an cperand field. A remark 1is
always terminated by a carriage return.

Statement Form

A statement consists of an optional label (if it 1is
absent, at least one space or tab must be used in
its place), followed by an operator, followed by as
many address expressions as the overator requires,
followed by an optional remark, and terminated by a
carriage return. Multiple blanks or tabs may be
used to improve readability (except inside
character constants or character strings).

Pseudo Operations

Define Byte

DB El,E2,...,En
or

DB "Character String"”
or

DB 'Character String'

Microsoft FORTRAN-808 User's Manual

3.4.2

3.4.3

3.4.4.

Page 19

Each of the address expressions El, E2,...En |is
evaluated and stored 1in n successive bytes. 'The
character string form allows <storing of multiole
ASCII characters and may be mixed with the address
expression form. Two-character character constants
are treated as character strings unless they are
combined with another address expression.

Either single or double quotes may be used as
character string delimiters, but the starting and
end delimiters must be identical. It is
permissible to use the delimiter gquotes as
characters, but the guote marks must appear twice

for every character occurrence desired. For
example:
DB "I am ""great"" today"

will store
I am "great" today

Each character in the character string is stored as
one byte with its high-order bit set to zero.

Define Character

DC “Character String"

Only double quotes may be used as character string
delimiters, and double guotes may not be used as
characters.

Each character in the character string is stored as
one byte with its high-order bit set to zero except

for the last byte which has its high-order bit set
to one.

Define Space

DS E

The address expression E is evaluated and that many
bytes of space are allocated. All names used in E
must be defined prior to the DS statement.

Define Word

DwW El, E2, ..., En

Each address expression is evaluated and stored as
N successive words.

Microsoft FORTRAN-80 User's Manual Page 249

3.4.5

3.4.6

Program Termination

END E

This statement 1is the last statement of each

program, The ovotional address exoression E gives
the program execution address. If E evaluates to
absolute zero, it is eguivalent to no execution
address.

Terminated Conditional Assembly

ENDIF

Terminates conditional assembly 1initiated by a
previous IFF or IFT.

Define Entry Points

ENTRY Nl, N2, ..., Nn
or
PUBLIC Nl, N2, ..., Nn

The names N1, N2, ..., Nn are entry points from
external ©programs and act as names for the proaram
being assembled. The names must appear in an ENTRY
or PUBLIC statement prior to their appearance as a
label.

Define Egquivalence

Label EQU E

The label of the EQU statement 1is assigned the
address given by address expression E. The label
is required and must not have previously appeared
as a label. All names used in E must be defined
prior to the EQU statement.

Define External

EXT N1l, N2, ..., Nn
or
EXTRN Nl, N2, ..., Nn

The names N1, N2, .eos Nn are defined to be

external references and may not have been used as a
label.

Microsoft FORTRAN-88 User's Manual Page 21

3.4.10 False Conditional Assembly

IFF E

The address expression E is evaluated and if it is
False (=0), all statements down to the next ENDIF
are assembled. If E 1is True (not =0), the
statements are not assembled.

3.4.11 True Conditional Assembly

IFT E
or
IF E

The address expression E is evaluated and if it ig
True (not =p), all statements down to the next
ENDIF are assembled. If E is False (=8), the

statements are not assembled.” Unlimited nesting of
conditionals is allowed.

3.4.12 Dpefine Origin

ORG E

The address eéxpression E 1is evaluated and the
assembler assigns - generated code starting with that
value. All names used in E must be defined prior

to the ORG statement, and the mode of E must not be
eXxternal.

3.4.13 Page Break

PAGE

A page break will occur on the listing. The PAGE
statement will not 1ist and code is not generated.
If a TITLE statement has been included, the title

(up to 125 characters) will be Printed at the top
of the page.

3.4.14 set

——

Label SET E

The label of the SET statement 1is assigned the
address given by expression &, The label is

label. All names used in E must be defined prior

Microsoft FORTRAN-80 User's Manual Page 22

The difference between the SET and EQU statements
is that SET allows redefinition of label values.
Redefinition of a label by an EQU statement will
result in an error,

3.4.15 Title
TITLE ICOMP INTEGER COMPARE ROUTINE

TITLE followed by a title of up to 125 characters
is allowed. ° This title will appear at the top of
each page. The title must be terminated by a
carriage return. The module name that the
assembler outputs to the loader is taken from the
first Six characters that follow the TITLE
statement. If no TITLE statement is included, the
assembler outputs to the loader a module name that
is taken from the file name.

3.5 Notes

1. An asterisk (%*) indicates the wvalue of the
location counter at the start of the statement.

2. When the assembler is entered, the origin Iis
assumed to be Relative-0.

3. Address expressions used in the conditional
assembly pseudo-operations IFF and IFT must
have all names defined prior to the use in the
expression, and the expression must be
Absolute.

4. Address expressions whose final mode is other
than Absolute must generate assembly data that
is stored as two bytes.

5. The following names are defined by the

assembler to have the indicated Absolute
values.

a=7 B=0 C=1 D=2 E=3

H=4 L=5 M=6 SpP=6 PS5W=6

Microsoft FORTRAN-884 User's Manual

3.6

A>M89

Sample Assembly

*EXMPL1,TTY:=EXMPL1

0000

0000
0ol
00B2
0063

poB4
p0B06

poeB7

0008
0809
pooA

0608

BoacC
POOF

8010
P11
P012
8713
0014

CSL3

MACS80 1.

7E
23
66
6F

06 03
AF

29
17
85
6F
95

C2 0006
EB

73
23

72
Cc9

MACS88 1.

boog:

0

2

LOOP

PAGE

00100

00200
02300
06400
00450
PB509
00600
00700
p0800
BO90D
21009
P1160
01200
81300
P1400
21500
81600
81700
1809
81909
62000
02100
02200
02300
02400
2500
p26006
82700
62800
82900

PAGE

pooe6"

Page 23

1

;CSL3(P1,P2)
;SHIFT P1 LEFT CIRCULARLY 3 BITS
; RETURN RESULT IN P2

ENTRY CSL3
;GET VALUE OF FIRST PARAMETER
CSL3:

MOV A,M

INX . H

Mov H,M

MOV L,A
;SHIFT COUNT

MVI B,3
LOOP: XRA A
;SHIFT LEFT

DAD H
;ROTATE IN CY BIT

RAL

ADD L

MOV L,A
: DECREMENT COUNT

DCR B
;ONE MORE TIME

JNZ LOOP

XCHG
iSAVE RESULT IN SECOND PARAMETER

MOV M,E

INX H

MOV M,D

RET

END

Microsoft FORTRAN-88 User's Manual Page 24

3.7 MACRO-8# Errors

MACRO-88 errors are indicated by a one-character
flag in column one of the 1listing file. If a
listing file is not being printed on the terminal,
each erroneous line is also printed cr displayed on
the terminal. Below is a 1list of the MACRO-380
Error Codes:

Code Meaning

- . - - — —— - —

Block name in DATA

Too many ENDIFs

Bad octal or hex or binary digit
Expression error

No label in EQU

Label or symbol defined more than once
Name too long

Bad operator (opcode)

Illegal field termination

Undefined symbol

Value error to MOD

Missing second field for opcode

Phase error

Missing or incorrect character string
delimiter

ovNnN<aHOOZIrmoOw

e
Microsoft FORTRAN-~88 User's Manual Page 25

SECTION 4

FORTRAN Runtime Error Messages

Code Meaning

Warning Errors:

IB Input Buffer Limit Exceeded

TL Too Many Left Parentheses in FORMAT
OB Output Buffer Limit Exceeded

DE Decimal Exponent Overflow

(Number in input stream had
an exponent larger than 99)

IS Integer Size Too Large
BE Binary Exponent Overflow
IN Input Record Too Long
ov Arithmetic Overflow
CN Conversion Overflow
on REAL to INTEGER Conversion
SN Argument to SIN Too Large
A2 Both Arguments of ATAN2 are 9
10 Illegal I/0 Operation
BI Buffer Size Exceeded During Binary I/0
RC Negative Repeat Count in FORMAT

Fatal Errors:

ID Illegal FORMAT Descriptor

Fo FORMAT Field Width is Zero

MP Missing Period in FORMAT

FW FORMAT Field Width is Too Small

1T I/0 Transmission Error

ML Missing Left Parenthesis in FORMAT

DZ Division by Zero, REAL or INTEGER

LG Illegal Argument to LOG Function
(Negative or Zero)

SQ Illegal Argument to SQRT Function (Negative)

DT Data Type Does Not Agree With FORMAT
Specification

EF EOF Encountered on READ

Runtime errors are surrounded by asterisks as follows:

FW

Fatal errors cause execution to cease (control is
returned to the operating system). Execution
continues after a warning error. However, after 20
warnings, execution ceases.

Microsoft FORTRAN-80 User's Manual Page 26

SECTION 5

Operating Systems

This section describes the use of FORTRAN-84 wunder the
different disk operating systems.

5.1 CPM

Create a Source File

Create a source file following the standard format
for FORTRAN source programs, using the CPM editor.
Filenames are up to eight characters 1long, with
3-character extensions. FORTRAN-80 source
filenames should have the extension FOR and
MACRO~-80 source filenames should have the extension
MAC.

Compile the Source File

Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Remov ing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
a source file called MAX1.FOR, type

F80 ,=MAX1

This command compiles the source file MAX1.FOR
without producing an object or listing file. If
necessary, return to the editor and correct any
syntax errors.

To compile the source file and produce an object
and listing file, type

F80 MAX1,MAX1=MAX1
or
F80 =MAX1/L

The compiler will create a REL (relocatable) file
called MAX1.REL and a listing file called MAX1.PRN.

Loading, Executing and Saving the Program (Using

LINK-80)
To load the program into mwemory and execute 1it,
type

L808 MAX1/G

To save the memory image (object code), type

Microsoft FORTRAN-38 User's Manual Page 27

L83 MAX1/E

which will exit from LINK-88, return to the monitor
and print three numbers: the starting address for
execution of the orogram, the end address of the
program and the number of 256-byte pages used. For
example

{218C 401A 48]

Use the CPM SAVE command to save a memory image.
For example

SAVE 48 MAX1.COM
(Programs are loaded beginning at 100H (400Q).)
An object code file has now been saved under the
name of your original source file (in this case
MAX1l) on the disk. To execute the program simply
type the program name

MAX1
after the CPM monitor prompt.

CPM - Available Devices

A:, B: disk drives

HSR: high speed reader
LST: line printer
TTY: Teletype or CRT

CPM Disk Filename Standard Extensions

FOR FORTRAN-80 source file
MAC MACRO-80 object file
REL relocatable object file
PRN listing file

COoM absolute file

CPM Command Lines

CPM command lines and files are supported; i.e., a
FORTRAN-388, MACRO-88 or LINK-80 command line may be
placed in the same line with the CPM run command.
For example, the command

A>F80 =TEST

causes CPM to load and run the FORTRAN-88 compiler,

which then compiles the program TEST.FOR and
creates the file TEST.REL. This is equivalent to
the following series of commands:

Microsoft FORTRAN-88 User's Manual Page 28

w

.2

A>F80
*=TEST
*°C

A>

DTC Microfile

Create a Source File

Create a source file following the standard format
for FORTRAN source programs, using the DTC editor.
Filenames are up to five characters 1long, with
l-character extensions. FORTRAN-8@ and MACRO-81
source filenames should have the extension T.

Compile the Source File

Before attempting to conpile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Remov ing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1l, type

F80 ,=MAX1

This command compiles the source file MAX1 without
producing an object or listing file. If necessary,
return to the editor and correct any syntax errors.

To compile the source file MAX1 and produce an
object and listing file, type

F80 MAX1,MAX1=MAX1l
or
F80 =MAX1/L/R

The compiler will create a relocatable file called
MAX1.0 and a listing file called MAXIl.L.

Loading, Executing and Saving the Program (Using
LINK-80)
To load the program into memory and execute it,

type

L8@ MAX1/G
To save the memory image (object code), type
L8020 MAX1/E

which will exit from LINK-30, return to the DOS
monitor and print three numbers: the starting
address for execution of the program, the end
address of the program, and the number of 256-byte
pages used. For example

Microsoft FORTRAN-8@ User's Manual Page 29

[218C 401A 48]

Use the DTC SAVE command to save a memory image.
For example

SA MAX1 2800 4@21a

2800H (240006Q) is the load address used by the DTC
Operating System.

An object code file has now been saved under the
name of your original source file (in this case

MAX1) on the disk. To execute the program, simply
type

RUN MAX1
after the DTC monitor prompt.

DTC Microfile - Available Devices

DO:, Dl;, D2:, D3: : disk drives
TTY: Teletype or CRT
LIN: line printer

DTC Disk Filename Standard Ex*tensions

T FORTRAN-80 or MACRO-30 source file
0 relocatable object file
L listing file

DTC Command Lines
DTC command lines are supported as described in
Section 5.1, CPM Command Lines.

5.3 Altair DOS

Create a Source File

Create a source file using the Altair DOS editor.
The name of the file should have four characters,
and the first character must be a letter. For
example, to <create a file called MAX1, initialize
DOS and type

EDIT MAX1

after the monitor prompt“.", The editor will
respond

CREATING FILE
08102

Enter the program, following the standard format
for FQRTRAN source programs. When you are finished
entering and editing the program, exit the editor.

Microsoft FORTRAN-80 User's Manual Page 30

Compile the Source File
Load the compiler by typing

F80

in response to the monitor prompt. The conpiler
will return the promnt character "*“,

Before attempting to compile the ©program and
produce object code for the first time, it is
advisable to do a simple syntax check. Remov'ing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1l, type

, =&MAX].

in response to the compiler prompt. (The editor
stored the ©program as &MAX1l) Typing ,=&MAX].
compiles the source file MAX1l without producing an
object or 1listing file. If necessary, return to
the editor and correct any syntax errors.

To compile the source file MAX1 and produce an
object and listing file, type

MAXIR, &MAX1=8&MAX1.

The compiler will create a REL (relocatable) file
called MAXIRREL and a listing file called &MAXILST.
The REL filename must be entered as five characters
instead of four, so it is convenient to use the
source filename plus R.

After the source file has been compiled and a
prompt has been printed, exit the compiler. If the
computer uses interrupts with the terminal, type
Control C. 1If not, actuate the RESET switch on the
computer front panel. Either action will return
control to the monitor.

Using LINK-80
Load LINK-89 by typing

L8@

after the monitor prompt. LINK-80 will respond
with a "*" prompt. Load the program into memory by
entering the name of the program REL file

MAXI1R

Executing and Saving the Program
Now yYou are ready to either execute the program
that is in memory or save a memory image (object

Microsoft FORTRAN-80 User's Manual Page 31

code) of the vprogram on disk. To execute the
program, type

/G
To save the memory image (object code), type

/E
which will exit from LINK-884, return to the DOS
monitor and print three numbers: the starting

address for execution of the program, the end
address of the program, and the number of 256-byte
pages used. For example

[26308]1 44054 35]

Use the DOS SAVE command to save a memory image.
Type

SAV MAX1 0 17100 44054 26301

17180 is the load address used by Altair DCS for
the floppy disk. (With the hard disk, use 440830.)

An object code file has now been saved under the
name of your original source file (in this case
MAX1l) on the disk. To execute the program, simply
type the program name

MAX1
after the DOS monitor prompt.

Altair DOS - Available Devices

FO;, Fl:, F2:, ... disk drives
TTY: Teletype or CRT

Altair DOS Disk Filename Standard Extensions

FOR FORTRAN~80 source file
MAC MACRO-38 source file
REL relocatable object file
LST listing file

Command Lines
Command lines are not supported with Altair DOS.

ISIS-IT

Create a Source File

Create a source file following the standard format
for FORTRAN source programs, using the ISIS-II

Microsoft FORTRAN-88 User's Manual Page 32

editor. Filenames are up to six characters 1long,
with 3-character extensions. FORTRAN-88 source
filenames should have the extension FOR. MACRO-89
source filenames should have the extension MAC.

Compile the Source File

Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing

syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1.FOR, type

F80 ,=MAX1

This command compiles the source file MAX1.FOR
without producing an object or listing file. 1If
necessary, return to the editor and correct any
syntax errors.

To compile the source file MAX1.FOR and produce an
object and listing file, type

F80 MAX1l,MAX1=MAXI1
or
F80 =MAX1/L/R

The compiler will create a REL (relocatable) file
called MAX1.REL and a listing file called MAX1.LST.

Loading, Saving and Executing the Program (Using

LINK-80)
To load the program into memory and execute it,
type

L88 MAX1/G

To save the memory image (object code), type
L8 MAX1/E

which will exit from LINK-88, return to the ISIS-IT’
monitor and print three numbers: the starting
address for execution of the program, the end
address of the program, and the number of 256-byte
pages used. For example

{210C 401A 48]
If you wish to save a memory image of the program,

it will be 1loaded beginning at 4000H (40020Q).
Execution should begin at 4000H.

Microsoft FORTRAN-80 User's Manual Page 33

ISIS-II - Available Devices

FO:, Fl:, F2:, ... disk drives
TTY: Teletype or CRT
LST: line printer

ISIS-I1 Disk Filename Standard Extensions

FOR FORTRAN-82 source file

MAC MACRO-30 source file
REL relocatable object file
LST listing file

ISIS-II Command Lines
ISIS~I1I command lines are suvported as described in
Section 5.1, CPM Command Lines.

0S—-CP/M°®

FORTRAN

Sept. 1978

Portions of this Manual are
© 1978 by Ohio Scientific Inc.

© 1978 by Micro Soft Inc.
© 1978 by Digital Research Inc.

CP/M is a registered trade
mark of Digital Research Inc.

Disclaimer
Ohio Scientific makes no warranties or
representations either expressed or implied for
0S~-CP/M softuware. It has been extensively
tested and is believed to be reasonably
error—free. MWe do not guarantee the grograms in
any fashion or that all bugs or problems that
mag_o;cur will be fixed. He will if duly
notified under normal circumstances maKe anh
attempt to help you with any problems that may
cccur and intend %o support this sof tware

whenever possible.

Microsoft 8080 FORTRAN IV

FORTRAN-30 Reference Manual

Addendum to Appendix E, pages 100-101
April, 1978

RANDOM ACCESS DISK FILES

The CP/M and ISIS-II versions of FORTRAN-80 now provide
random disk accessing, i.e., a record may be specified
with a disk READ or WRITE.

The record number is specified by using the REC=n option
in the READ or WRITE statement. For example:

I =10
WRITE (6,20,REC=1,ERR=50) X,Y,Z

This program segment writes record 10 on LUN 6. If a
previous record 10 exists, it is written over. If no
record 10 exists, the file is extended to create one.
Any attempt to read a non-existent record results in an
I/0 error..

The record length of any file accessed randomly is assumed
to be 128 bytes (1 sector). Therefore, it is recommended
that any file you wish to read randomly be created via
FORTRAN (or Microsoft BASIC) random access statements.

Random access files may be created via FORTRAN programs,

by using either binary or formatted WRITE statements. If
the WRITE statement does not cause enough data to be trans-
ferred to fill the record (128 bytes), then the end of the
record is filled with zeros (NULL characters).

ISIS-II DISK FILES

Disk files may now be created and accessed by FORTRAN-80
programs running under ISIS~II. Files are accessed either
sequentially or randomly, as described in Appendix E of the
FORTRAN-80 manual. The only programming difference under
ISIS-II is that the parameters required by the OPEN subrou-
tine have been altered slightly from the form described in

i A W i

Microsoft 8080 FORTRAN IV

FORTRAN-80 Reference Manual N

Addendum to Appendix E, pages 100-101
April, 1978
page 2

Appendix E. The form of an OPEN call under ISIS-II is
CALL OPEN (LUN, Filename)
where:

LUN = a Logical Unit Number to be associated with the file

(must be an integer constant or variable with a value between
1 and 10).

Filename = an ASCII name which the operating system will asso
ciate with the file. The Filename should be a Hollerith or
Literal constant, or a variable or array name where the
variable or array contains the ASCII name. The filename
should be in the form normally required by ISIS-II, i.e., a
device name surrounded by colons, followed by a name of up

to 6 characters, a period, an extension of up to 3 characters
and a space (or other non-alphanumeric character). The
Filename must be terminated by a non-alphanumeric character.

The following are examples of valid OPEN calls:

CALL OPEN (6, ':F1:FOO.DAT ')

CALL OPEN (1, ':F5:TESTFF.TMP ')
CALL OPEN (10, ':FO:A.DAT ')

CALL OPEN (4, ':F3:A.B ')

TN

Microsoft 8080 FORTRAN IV
FORTRAN-80 Reference Manual
Addendum

May, 1978

APPENDIX F
FORTRAN-80 Library Subroutines

The FORTRAN-80 library contains a number of subroutines that
may be referenced by the user from FORTRAN or assembly pro-
grams. In the following descriptions, $AC refers to the
floating accumulator; $AC is the address of the low byte of
the mantissa. $AC+3 is the address of the exponent. $DAC
refers to the DOUBLE PRECISION accumulator; $DAC is the ad-
dress of the low byte of the mantissa. $DAC+7 is the address
of the DOUBLE PRECISION exponent.

All arithmetic routines (addition, subtraction, multiplica-
tion, division, exponentiation) adhere to the following
calling conventions.

1. Argument 1 is passed in the registers:
Integer in [HL]
Real in $AC
Double in $DAC

2., Argument 2 is passed either in registers, or in memory
depending upon the type:

a) Integers are passed in [HL], or [DE] if [HL]
contains Argument 1.

b) Real and Double Precision values are passed
in memory pointed to by [HL].
([HL] points to the low byte of the mantissa.)

The following arithmetic routines are contained in the Librap™\

Function Name Argument 1 Type Argument 2 Type
Addition $AA Real Integer
$AB Real Real
$AQ Double Integer
$AR Double Real
$AU Double Double
Division $D9 Integer Integer
$DA Real Integer
$DB Real Real
$DQ Double Integer
$DR Double Real
$DU Double Double
Exponentiation $E9 Integer Integer
$EA Real Integer
$EB Real Real
$EQ Double Integer
$ER Double Real
$EU Double Double
Multiplication $M9 Integer Integer
$MA Real Integer
. $MB Real Real
$MQ Double Integer
$MR Double Real
$MU Double Double
Subtraction $sa Real Integer
$SB Real Real
$sSQ Double Integer
$SR Double Real
$su Double Double

Additional Library routines are provided for converting

between value types.

Arguments are always passed to and

returned by these conversion routines in the appropriate

registers:

Logical in [A]

Integer in [HL]

Real in $AC

Double in $DAC

Name Function

$ca Integer to Real
$ccC Integer to Double
$CH Real to Integer
$cJ Real to Logical
$CK Real to Double
$Cx Double to Integer
$Ccy Double to Real
$C2

Double to Logical

Microsoft FORTRAN-80 User's Manual
Addendum to: SECTION 1

May,

The

Compiling FORTRAN Programs
1978 °

following additions are to be made to Section 1

(Compiling FORTRAN Programs) of the Microsoft FORTRAN-80
User's Manual.

Page 6
Add to Section 1.1.2 FORTRAN-80 Compilation Switches
Switch Action

Specifies to the compiler that the generated

M

code should be in a form which can be loaded
into ROMs. When a /M is specified, the gen-
erated code will differ from normal in the
following ways:
1. FORMATs will be placed in the program
area, with a "JMP" around them.
2. Parameter blocks (for subprogram calls
with more than three parameters) will
be initialized at runtime, rather than
being initialized by the loader.

NOTE

If a FORTRAN program is intended for ROM, the programmer
should be aware of the following ramifications:

1.

DATA statements should not be used to initialize RAM.
Such initialization is done by the loader, and will
therefore not be present at execution. Variables and
arrays may be initialized during execution via assign-
ment statements, or by READing into them. \

FORMATs should not be read into during execution.

If the standard library I/0 routines are used, DISK
files should not be OPENed on any LUNs other than 6,
7,8,9,10. If other LUNs are needed for Disk I/0,
$LUNTB should be recompiled with the appropriate
addresses pointing to the Disk driver routine.

Microsoft FORTRAN-80 User's Manual

Addendum to: SECTION 1
Compiling FORTRAN Programs

May, 1978
Page 2

A library routine, $INIT, sets the stack pointer at the top
of available memory (as indicated by the operating system)
before execution begins.

The calling convention is:

LXI , B,<return address>
JMP $INIT

If the generated code is intended for some other machine,
this routine should probably be rewritten.

Microsoft FORTRAN-80 User's Manual

Addenda to: SECTION 2
Linking FORTRAN Programs

May, 1978

The following additions are to be made to Section 2
(Linking FORTRAN Programs) of the Microsoft FORTRAN-80

User's Manual.

Page 11-12
Add to Section 2.1.2 LINK-80 Switches
/U and /M also print the origin and end of

data area in addition to selected globals.
DATA 100 200
PROGRAM 1000 2000

The program information is only printed if
done. Otherwise, the program is stored in

Switch Action

the program and
Example:

a /D has been
the data area.

N If a <filename>/N is specified, the
program will be saved on disk under

the selected name (with a

default

extension of .COM for CP/M) when a

/E or /G is done. A jump

to the start

of the program is inserted if needed
so the program can run properly (at

100H for CP/M).

P and D /P and /D allow the origin(s) to be
set for the next program loaded. /P
and /D take effect when seen (not de-

ferred), and they have no
programs already loaded.

effect on
The form is

/P:<address> or /D:<address>, where
‘'<address> is the desired origin in

the current typeout radix.

(Default

radix for non-MITS versions is hex.
/0 sets radix to octal; /H to hex.)

LINK-80 does a default /P:

<link origin>+3

(i.e., 103H for CP/M and 4003H for ISIS)
to leave room for the jump to the start
address. If no /D is given, programs

load as usual, except the

area base. is

N

|

|

||

I

)

|

I

i

|

]

I

Microsoft FORTRAN-80 User's Manual

Addenda to: Section 2
Linking FORTRAN Programs

May, 1978
Page 2
settable. If a /D is given, all Data and
Common areas are loaded starting at the
data origin and the program area at the
program origin. Example:
*/P:200,FO0
DATA 200 300
* /R
*/P:200 /D:400,FO0O0
DATA 400 480
PROG 200 280
Page 13-14

Add to Section 2.3 Format of LINK Compatible Object Files

Loader type 9 is now in use; it is external + offset.

Type 9 has only an A field, there is no B field as pre-
viously documented. The value for type 9 will be added to
the two bytes starting at the current location counter.
This. addition is done after a /E or /G is given, so unless
undefineds remain, the effect is external + offset.

This type can also be used to add program and data relatives
or almost any other combination of relocation types. The
assembler, however, only handles the case with externals.

Page 15
Add to Section 2.4 LINK-80 Error Messages

?20ut of Memory has replaced ?Fatal Table Collision
?<file> Not Found has replaced ?File Not Found. The

name of the file not found is printed.
$Overlaying Eg::gfam] Area

A /D or /P will cause already loaded
data to be destroyed.

Microsoft FORTRAN-80 User's Manual
Addenda to: SECTION 2

Linking FORTRAN Programs S
May, 1978
Page 3
s . [Program]
?Intersecting [Data] Area

The program and data area intersect
and an address or external chain
entry is in this intersection. The
final value cannot be converted to
a current value since it is in the
area intersection.

?Start Symbol - <name> - Undefined
: After a /E: or /G: is given, the
symbol specified was not defined.

[Above]

Origin [Below] Loader Memory, Move Anyway (Y or N)?
After a /E or /G was given, either
the data or program area has an ori-
gin or top which lies outside loader
memory (i.e., loader origin to top
of memory). If a Y <cr> is given,
LINK-80 will move the area and con- _.
tinue. If anything else is given,
LINK-80 will exit. In either case,
if a /N was given, the image will
already have been saved.

A~

?Can't Save Object File
A disk error occurred when the file
was being saved.

Page 15
Add Section 2.5 Program Break Information

LINK-80 stores the first free location in a symbol called
$MEMRY if that symbol has been defined by a program loaded.
$MEMRY is set to the top of the data area +1.

NOTE

If /D is given and the data origin is less
than the program area, the user must be sure
there is enough room to keep the program from
being destroyed. This is particularly true
with the disk driver for FORTRAN-80 which uses

$MEMRY to allocate disk pbuffers and FCB's. O\

Microsoft FORTRAN-80 User's Manual

Addenda to: SECTION 3
The MACRO~80 Assembler

May, 1978

The following additions and corrections are to be made to
Section 3 (The MACRO-80 Assembler) of the Microsoft
FORTRAN-80 User's Manual.

1. Page 16
Add to Section 3.1.2 MACRO-80 Switches
/C is the Cross Reference Switch.

2. Page 17
Add to Section 3.3.2 Constants

e. Binary: Numbers consisting of a string
of binary digits (0's and 1's)
A~ followed by a B. (e.g., 101011B)
3. Page 17

Correction to Section 3.3.3 Labels
Labels need not begin in column 1.

4., Page 17-18

Replace Section 3.3.5 Address Expressions with the following:
3.3.5 Address Expressions

An address expression consists of a name or a
constant or an address expression + or - an address
expression. An address expression uses the current
assigned address of a name or the 16-bit value of a
constant to form a 16-bit value which, after the
expression is evaluated, is truncated to the field
size required by the operator.

5. Page 18
Add to Section 3.3.7 Statement Form

Statements may begin in column 1.
SN

Microsoft FORTRAN-80 User's Manual

Addenda to: SECTION 3
The MACRO-80 Assembler

May, 1978 :
Page 2

Page 18
Add Section 3.3.8 Expression Evaluation

Operator precedence during expression evaluation is as
follows:

Parenthesized expressions

HIGH, LOW

*, /, MOD, SHL, SHR

+, - (unary and binary)

Relational Operators EQ, LT, LE, GT, GE, NE
Logical NOT

Logical AND

Logical OR, XOR

The Relational, Logical and HIGH/LOW operators must
be separated from their operands by at least one space.

Byte Isolation Operators

The byte isolation operators are as follows:

HIGH Isolate the high order 8 bits
of a 16-bit value

LOW Isolate the low order 8 bits
of a 16=-bit value

Example:
IF HIGH VALUE EQ O

The above IF pseudo-op determines whether the high
order byte of VALUE is zero. :

Relational Operators

The relational operators are as follows:

EQ Equal

NE Not equal

LT Less than

LE Less than or equal
GT ' Greater than

GE Greater than or equal

e~

Microsoft FORTRAN-80 User's Manual

Addenda to: SECTION 3
’ The MACRO-80 Assembler

May, 1978
Page 3

These operator= yield a true or false result. They are
commonly used in conditional IF pseudo-ops. They must be
separated from their operands by spaces. Example:

IF LABEL1 EQ LABEL2

The above pseudo-op tests the values of LABEL1 and LABEL2
for equality. If the result of the comparison is true,
the assembly language code following the IF pseudo-op is
assembled, otherwise the code is ignored.

Page 18

Add Section 3.3.8 Opcodes as Operands

8080 opcodes are valid one-byte operands. Note that only
the first byte is a valid operand. For example:

MVI A, (JMP)

ADI (CPI)

MVI B, (RN2Z)

CPI (INX H)
ACI (LXI B)

MVI C, (MOV A,B)

Errors will be generated if more than one byte is included
in the operand -~ such as (CPI 5), (LXI B,LABEL1) or
(JMP LABEL2).

Opcodes used as one-byte operands need not be enclosed in

. parentheses.
Page 19
Add to Section 3.3.4 Define Word
Example:

DW 'AB'

Two-byte values are stored in memory in low order byte/high

order byte sequence. The ASCII code representatlon for
character B is stored, then the character A is stored.

On the object code listing however, the printout for all
two-byte values is in high order byte/low order byte
sequence, for ea51er reading.

Microsoft FORTRAN-80 User's Manual

Addenda to: SECTION 3
The MACRO-80 Assembler

May, 1978
Page 4

Page 22 .
Add Section 3.4.16 Memogy,Segment_Specification

It is possible to spécify that sections of a program be
loaded in absolute, code relative or data relative segments
of memory. The pseudo-ops are: T '

ASEG ' For loading in an absolute
segment of memory

DSEG For loading in a data relative
segment of memory '

CSEG For loading in a code relative
segment of memory

One of the possible uses of these pseudo-ops is to specify
RAM and ROM segments of memory. The data relative segment
would be RAM, and the code relative segment would be ROIM.

After an ASEG, CSEG or DSEG pseudo-op is encountered, all
following code is loaded in that area until a subsequent
ASEG, CSEG or DSEG pseudo-op is encountered.

If none of these three pseudo-ops is specified, the de-
fault condition is to load everything code relative.

Additional flexibility in relocating code is possible
through use of the ORG pseudo-op, which sets the value of
the appropriate program counter. For example:

DSEG Sets the data relative program
ORG 50 counter to a value ‘0of 50

Microsoft FORTRAN-80 User's Manual

Addenda to: SECTION 3
The MACRO-80 Assembler

May, 1978
Page 5

NOTES

1. The Intel operands PAGE and INPAGE will
generate expression errors when used with
CSEG or DSEG pseudo-ops. These errors
are warnings; the assembler ignores the
operands,

2. In version 3.0 of the MACRO-80 Assembler,
references to a particular external symbol
may not be made in more than one memory
segment. For example, an external symbol
EXT1 might be referenced in the code
relative segment, external symbols EXT3,
EXT4 might be referenced in the data
relative segment, but none could be ref-
erenced in more than oné memory segment.

Refer to Section 2, Linking FORTRAN Programs, to determine
how these segments are placed in specific areas of memory.

10.

Microsoft FORTRAN-80 User's Manual

Addenda to: SECTION 3
The MACRO-80 Assembler

May, 1978
Page 6

Page 24
Add Section 3.8 Cross Reference Facility

The Cross Reference Facility is invoked by typing CREFS80.

In order to generate a cross reference listing, the assembler
must output a special listing file with embedded control
characters. The MACRO-80 command string tells the assembler
to output this special listing file. An additional switch
has been introduded, /C, the cross reference switch. When
the /C switch is encountered in a MACRO-80 command string,
the assembler opens a .CRF file instead of a .LST file.

Examples:

*=TEST/C Assemble file TEST.MAC and
create object file TEST.REL
and cross reference file
TEST.CRF

*T ,U=TEST/C Assemble file TEST.MAC and
create object file T.REL
and cross reference file
U.CRF.

When the assembler is finished, it is necessary to call the
cross reference facility by typing CREF80. The command string is:

*listing file=source file

The default extension for the source file is .CRF. The /L
switch is ignored, and any other switch will cause an error
message to be sent to the terminal. Possible command strings
are:

*=TEST Examine file TEST.CRF and
generate a cross reference
listing file TEST.LST.

*P=TEST Examine file TEST.CRF and
generate a cross reference
listing file T.LST.

Microsoft FORTRAN-80 User's Manual

Addenda to: SECTION 3
The MACRO-80 Assembler

May, 1978
Page 7

Cross reference listing files differ from ordinary listing
files in that:

1. Each source statement is numbered.

2. At the end of the listing, variable names appear in

alphabetic order along with the numbers of the lines
on which they are referenced or defined.

FORTRAN-80

Overview

Microsoft's FORTRAN-80 package provides new capabilities for users
of 8080 and Z-80 based microcomputer systems. FORTRAM-8C is comparable
to FORTRAN compilers on large mainframes and minicomputers. All of
ANS! Standard FORTRAN X3.9-1966 is included except the COMPLEX data
type. - Therefore, users may take advantage of the many applications
programs already written in FORTRAN.

Versions of FORTRAN-80 for the CP/M, 1S1S-11, DTC Microfile and
MITS DOS floppy disk operating systems are available off the shelf.
Other versions will be prepared based upon user demand.

Relocatable Code and Library Features

FORTRAN-80 is unique in that it provides a microprocessor FORTRAN
and assembly language development package that generates relocatable
object modules. This means that only the subroutines and system rou-
tines required to run FORTRAN-80 programs are loaded before execution.
Subroutines can be placed in a system library so that users develop a
common set of subroutines that are used in their programs. Also, if
only one module of a program is changed, it is necessary to re-compile
only that module.

The standard library of subroutines supplied with FORTRAN-80
includes:

ABS IABS DABS AINT
INT IDINT AMOD MOD
AMAXO AMAX1 MAXO MAX1
DMAX1 AMINO AMIN1 MINO
MINT DMIN1 FLOAT 1F1X
SIGN ISIGN DSIGN : DIM
IDIM SNGL DBLE EXP
DEXP ALOG DLOG ALOG10
DLOG10 SIN DSIN cos
DCOS TANH SQRT : DSQRT
ATAN DATAN ATAN2 DATAN2
DMOD PEEK POKE INP
ouT

The library also contains routines for 32-bit and 64-bit floating
point addition, subtraction, multiplication, division, etc. These
routines are among the fastest available for performing these functions
on the 8080.

The
Standard:

1.

o v & W

The

Enhancements

FORTRAN-80 compiler has a number of enhancements of the ANSI

LOGICAL variables which can be used as integer
quantities in the range +127 to -123.

LOGICAL DO loobs for tighter, faster execution
of small valued integer loops.

Mixed mode arithmetic.
Hexadecimal constants.
Literals and Holleriths allowed in expressions.

Logical operations on integer data. .AND., .OR.,
.NOT., .XOR. can be used for 16-bit or 8-bit
Boolean operations.

READ/WRITE End of File or Error Condition trans-
fer. END=n and ERR=n (where n is the statement
number) can be included in READ or WRITE statements
to transfer control to the specified statement on
detection of an error or end of file condition.

ENCODE/DECODE for FORMAT operations to memory.

FORTRAN-80 Compiler Characteristics

FORTRAN-80 compiler can compile several hundred statements per

minute in a single pass and needs less than 24K bytes of memory to com-
pile most programs. Any extra available memory wilil be used by the

compiler

for extended optimizations.

_In spite of its small size, the FORTRAN-80 compiler optimizes the
generated object code in several ways:

1.

Common subexpression elimination. Common subex-
pressions are evaluated once, and the value is
substituted in later occurrences of the subex-
pression.

Peephole Optimization. Small sections of code are
replaced by more compact, faster code in special
cases. Example: I=I+1 uses an INX H instruction
instead of a DAD.

3. Constant folding. Integer constant expressions
are evaluated at compile time.

4. Branch Optimizations. The number of conditional
jumps in arithmetic and logical IFs is minimized.

Long descriptive error messages are another feature of the com-
piler. For instance: .

? Statement unrecognizable

is printed if the compiler scans a statement that is not an assignment
or other FORTRAN statement. The last twenty characters scanned before
the error is dectected are also printed.

The compiler generates a fully symbolic listing of the machine
language being generated. At the end of the listing, the compiler pro-
duces an error summary and tables showing the addresses assigned to
labels, variables and constants.

Assembler, Linker and Library Manager

A relocating assembler (MACR0-80), relocating linking loader
(LINK-80) and a library manager (LIB-80) are included in the FORTRAN-80
package.

The relocating assembler is compatible with INTEL's assembler,
except .MACRO capability is not provided. The assembler uses approxi-
mately 7K bytes of memory.

LINK-80, the relocating loader, resolves internal and external
references between the object modules loaded. LINK-80 also performs
library searches for system subroutines and generates a load map of
memory showing the locations of the main program, subroutines and
COMMON areas. LINK-80 requires approximately 4K bytes of memory.

L18-80, the library manager, allows the user to customize libraries
of object modules. LIB-80 can be used to insert, replace or delete ob-
ject modules within a library, or create a new library from scratch.
L1B-80 commands can also list the modules in the library and the symbol
definitions they contain. LIB-80 requires approximately 4K of memory
and uses the rest of memory as a buffer for its editing operations.

Custom 1/0 Drivers
Users may write non-standard 1/0 drivers for each Logical Unit

Number, making the task of interfacing non-standard devices to FORTRAN
programs a straightforward one.

Future Extensions

During the first quarter of 1978 MACRO capability will be added
to the assembler, and LINK-80 will be modified to handle overlays.

Support

FORTRAN-80 users will receive quick turnaround on bug fixes, and
new versions of FORTRAN-80 will be documented and distributed in an

expedient manner.

Other Products

Microsoft's complete product line includes FOCAL for the 6502 and
6800, BASIC for the 6502 and 6800, and Altair (8080) BASIC. In addi-
tion, Microsoft has development software that runs on the DEC-10 for

all of these microprocessors.

Pricing
Single Copy Prices:
FORTRAN-80 system (including documentation) $500.00

FORTRAN-80, MACR0-80, LINK-80, L1B-80 manuals
and system users guide $ 20.00

OEM and dealer agreements are available upon request.

For more information contact:

Steve Wood

General Manager

Microsoft

300 San Mateo NE, Suite 819
Albugquerque, NM 87108
505-262-1486

MICROSOFT 8088 FORTRAN-IV

Version 2.2

Copyright 1977 (C) by Microsoft

MICROSOFT 8088 FORTRAN-IV Page 2

Table of Contents

Section
1 Introduction
2 Fortran Program Form

2.1 Fortran Character Set

2.1.1 Letters
2.1.2 Digits
2.1.3 Alphanumerics
.2.1.4 Special Characters
2.2 FORTRAN Line Format
2.3 Statements
3 Data Representation/Storage Format

3.1 Data names and types

3.1.1 Names
3.1.2 Types

3.2 Constants
3.3 Variables
3.4 Arrays and Array Elements
3.5 Subscripts
3.6 Data Storage Allocation
4 FORTRAN Expressions
4,1 Arithmetic Expressions
4,2 Expression Evaluation
4.3 Logical Expressions

4.3.1 Relational Expressions
4.3.2 Logical Operators

4.4 Hollerith, Literal, and Hexadecimal Constants
in Expressions

5 Replacement Statements
6 Specification Statements

6.1 Specification Statements

6.2 Array Declarators

6.3 Type Statements

6.4 EXTERNAL Statements

6.5 DIMENSION Statements

6.6 COMMON Statements

6.7 EQUIVALENCE Statements

6.8 DATA Initialization Statement

MICROSOFT 8880 FORTRAN-IV Page 3

7 FORTRAN Control Statements
7.1 GOTO Statements

.1.1 Unconditional GOTO
7 1.2 Computed GOTO
7.1.3 Assigned GOTO

2 ASSIGN Statement
.3 1IF Statement

.3.1 Arithmetic IF
3.2 Logical IF

~J ~J

4 DO Statement

5 CONTINUE Statement
6 STOP Statement

.7 PAUSE Statement

8 CALL Statement

9 RETURN Statement
19 END Statement

8 Input/Output
8.1 Formatted READ/WRITE

8.1.1 Formatted READ
8.1.2 Formatted WRITE

8.2 Unformatted READ/WRITE)
8.3 Auxiliary I/O Statements
8.4 ENCODE/DECODE
8.5 Input/Output List Specifications
8.5.1 List Item Types
8.5.2 Special Notes on List Specifications
8.6 FORMAT Statements
8.6.1 Field Descriptors
8.6.2 Numeric Conversions
8.6.3 Hollerith Conversions
8.6.4 Logical Conversion
8.6.5 X Descriptor
8.6.6 P Descriptor
8.6.7 Special Control Features of FORMAT Statements
8.6.7.1 Repeat Specifications
8.6.7.2 Field Separators
8.6.8 FORMAT Control, List Specifications, and
Record Demarcation
8.6.9 FORMAT Carriage Control
8.6.18 FORMAT Specifications in Arrays
9 Functions and Subprograms

9.1 PROGRAM Statement
9.2 Statement Functions
9.3 Library Functions

MICROSOFT 8080 FORTRAN-IV Page 4

Function Subprograms

Construction of Function Subprograms
Referencing a Function Subprogram

Subroutine Subprograms

Construction of Subroutine Subprograms
Referencing a Subroutine Subprogram

Return From Function and Subroutine Subprograms
Processing Arrays in Subprograms

BLOCK DATA Subroutine

L] . [] L[]
=0 0 ~JO U &N

O W WLWLWWWWY
NS

APPENDIX A- Language Extensions and Restrictions
APPENDIX B- I/O Interface ‘
APPENDIX C- Subprogram Linkages

APPENDIX D- ASCII Character Codes

APPENDIX E- Disk File Access

MICROSOFT 8088 FORTRAN-IV Page 5

SECTION 1

INTRODUCTION

FORTRAN is a universal, problem oriented programming
language designed to simplify the preparation and check-out
of computer programs. The name of the language - FORTRAN -
is an acronym for FORmula TRANslator. ’

The syntactical rules for wusing the 1language are
rigorous and require the programmer to define fully the
characteristics of a problem in a series of precise
statements. These statements, called the source program,
are translated by a system program called the FORTRAN
processor into an object program in the machine language of
the computer on which the program is to be executed.

_ This manual defines the FORTRAN source language for the
8880 and Z-80 microcomputers. This language includes the
American National Standard FORTRAN language as described in
ANSI document X3.9-1966, approved on March 7, 1966, plus a
number of language extensions and some restrictions. These
language extensions and restrictions are described in the
text of this document and are listed in Appendix A.

NOTE

This FORTRAN differs from the
Standard in that it does not
include the COMPLEX data type.

Examples are included throughout the manual to
illustrate the construction and use of the language
elements. The programmer should be familiar with all

aspects of the language to take full advantage of its
capabilities.

Section 2 describes the form and components of an 8080
FORTRAN source program. Sections 3 and 4 define data types
and their expressional relationships. Sections 5 through 9

describe the proper «construction and usage of the various
statement classes. .

MICROSOFT 8688 FORTRAN-IV Page 6

SECTION 2

FORTRAN PROGRAM FORM

8080 FORTRAN source programs consist of one program
unit called the Main program and any number of program units
called subprograms. A discussion of subprogram types and
methods of writing and using them is in Section 9 of this
manual.

Programs and program units are constructed of an
ordered set of statements which precisely describe
procedures for solving problems and which also define
information to be used by the FORTRAN processor during
compilation of the object program. Each statement 1is
written using the FORTRAN character set and following a
prescribed line format.

2.1 FORTRAN CHARACTER SET

To simplify reference and explanation, the FORTRAN
character set 1is divided into four subsets and a
name is given to each.

2.1.1 LETTERS

'G'HIIIJ'KIL'r4INIOIP’QIR’sIT'U

NOTE
No distinction is made between upper and
lower <case letters. However, for clarity

and legibility, exclusive use of upper case
letters is recommended.

2.1.2 DIGITS

9,1,2,3,4,5,6,7,8,9

NOTE

Strings of digits representing numeric
quaqtltles are normally interpreted as
decimal numbers. However, in certain

MICROSOFT 8088 FORTRAN-IV Page 7

2.1.3

statements, the interpretation is in the
Hexadecimal number system in which case the
letters A, B, C, D, E, F may also be used
as Hexadecimal digits. Hexadecimal usage
is defined in the descriptions of
statements 1in which such notation is
allowed.

ALPHANUMERICS

A sub-set of characters made up of all letters and
all digits.

SPECIAL CHARACTERS

.\v/*l+"

Blank

Equality Sign
Plus Sign

Minus Sign
Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point

NOTES:

l.

FORTRAN program lines consist of 8@ character
positions or columns, numbered 1 through 80.
They are divided into four fields.

The following special characters are classified
as Arithmetic Operators and are significant in
the unambiguous statement of arithmetic
expressions.

+ Addition or Positive Value

- Subtraction or Negative VAlue
* Multiplication

/ Division

** Exponentiation

The .other special characters have specific
application in the syntactical expression of

the FORTRAN language and in the construction of
FORTRAN statements.

by

MICROSOFT 8@82 FORTRAN-IV Page 8

4. Any printable character may appear in a
Hollerith or Literal field.

2.2 FORTRAN LINE FORMAT

The sample FORTRAN coding form (Figure 2.1) shows
the format of FORTRAN program lines. The lines of
the form consist of 88 character positions or
columns, numbered 1 through 886, and are divided
into four fields.

1. Statement Label (or Number) field- Columns 1
through 5 (See definition of statement labels).

2. Continuation character field-
Column 6)

3. Statement field-
Columns 7 through 72

4., Indentification field-
Columns 73 through 849

The identification field is available for any
purpose the FORTRAN programmer may desire and is
ignored by the FORTRAN processor.

The lines of a FORTRAN statement are placed in
Columns 1 through 72 formatted according to line
types. The four line types, their definitions, and
column formats are:

1. Comment line -- used _ for source program
annotation at the convenience of the
programmer.

l. <Column 1 contains the letter C.

2, Columns 2 - 72 are used in any desired
format to express the comment or they may
be left blank.

3. A comment line may be followed only by an
initial 1line, an END 1line, or another
comment line.

4. Comment lines have no effect on the object

program and are ignored by the FORTRAN
processor except for display purposes in
the listing of the progranm.

Example:

TR TV IV Ndw v

———

sz \ ’ FORTRAN Coding Form .

PEOICGRAM GRAPHIC
PUNCHHIG
NSTRUCTIONS
PROGRAMMEK X DATE ! Jeno PUNCH
F fsraumint |G
A1 Numeew 3 FORTRAN STATEMENT
L L
V2 3 4 ste s 2 9 30 N1 b3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 13 34 35 36 37 o8 39 A) Al 40 A3 44 45 A 4 48 A9 50 OV 52 G2 54 55 34 5 iw 5% el 41 ¢ ‘
. ! T i i M 1 .
' i i : ¢ . ' i :
. . . ' ; ;o .
i . J : ; T 1 T
Lo) P R ' :
; A T X 7 T T T 7 N
. , . . ,
Lo B |) .
——— " : ! i 1 - "
+ . -
™ . ——— — —— _ . - : A :
: i . i i : . ' ! ; : , ' : .
i . | | ; i . . ; i '
4 ! e e Bt . 4 ;
i : | i . : .
b . [pooro .) | i . . .
. . 1 : ; L
. : T R T . : .
g . ot [C oo . Lo ;
HEE . i A - : — ;
t i
i } 1
: ; !
; , P :
’ . ; o + ; ,
i L o : ;
; L T T 7 T — :
: \ ' ' i : H : ; i . |)
B , N - o - S
L ' i ;
T—
, _ : e _ L , P ,,
T , V B « — , , 1 -
! , Lo [S ; ,
—y N i B P ! i : :
|
i
Tt > T ; t
N T oo T ” ” T ! R AR
!) ' Lo ' Lo P ; ; .
: ' i
; [[
[. :
i ' . ! i | i .
1 2 3 4 51617 8 9 10 V12 13 14 15 16 i7 18 19 20 2V 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 G4 57 LA A A - -

* A stondard card form, IBM electio 888157, is available for punching statements from this form

MICROSOFT 8088 FORTRAN-IV Page 9

4-

C COMMENT LINES ARE .INDICATED BY THE
C CHARACTER C IN COLUMN 1.
C THESE ARE COMMENT LINES

END line -- the last line of a program unit.

1. Columns 1-5 may contain a statement label.

2. Column 6 must contain a zero or blank.

3. Columns 7-72 contain one of the characters
E, N or D, 1in that order, preceded by,
separated by or followed by blank
characters.

4. Each FORTRAN program unit must have an END
line as its 1last 1line to inform the
Processor that it is at the physical end of
the program unit.

5. An END line may follow any other type line.
Example:

END

Initial Line -- the first or only line of each

statement.

1. Columns 1-5 may contain a statement 1label
to identify the statement.

2. Column 6 must contain a zero or blank.

3. Columns 7-72 contain all or part of the
statement.

4. An initial line may begin anywhere within
the statement field.

Example:
C THE STATEMENT BELOW CONSISTS
C OF AN INITIAL LINE
C
A= ,5*SQRT (3-2.*C)

Continugtion Line -- used when additional lines

of coding are required to complete a statement

originating with an initial line.

MICROSOFT 8080 FORTRAN-IV Page 10

l. Columns 1-5 are ignored, unless Column 1
contains a C.

2, If Column 1 contains a C, it is a comment
line.

3. Column 6 must contain a character other
than zero or blank.

4, Columns 7-72 contain the continuation of
the statement.

5. There may be as many continuation lines as
needed to complete the statement.

* Example:.

C THE STATEMENTS BELOW ARE AN INITIAL LINE
C AND 2 CONTINUATION LINES
C
63 BETA(l1,2) =
1 A6BAR**7- (BETA (2, 2) -A5BAR*50
2 +SQRT (BETA(2,1)))

A statement label may be placed in columns 1-5 of a
FORTRAN statement initial 1line and is used for
reference purposes in other statements.

The following considerations govern the use of
statement labels:
l. The label is an integer from 1 to 99999,

2. The numeric value of the label, 1leading zeros
and blanks are not significant.

3. A label must be unique within a program unit.

4. A label on a continuation line is ignored by
the FORTRAN Processor.

MICROSOFT 8080 FORTRAN-IV Page 11

2.3

Example:

C EXAMPLES OF STATEMENT LABELS
C

1.

190
99999

763

STATEMENTS

Indjvidual statements deal with specific aspects of
a procedure described in a program unit and are
classified as either executable or non-executable.

Executable statements sp2cify actions and cause the
FORTRAN Processor to generate object program
instructions. There are three types of executable
statements:

l. Replacement statements.
2. Control statements.

3. Input/Output statements.

Non-executable statements describe to the processor
the nature and arrangement of data and provide
information about input/output formats and data
initialization to the object program during program
loading and execution. There are five types of
non-executable statements:

1, Specification statements.

2. DATA Initialization statements.
3. FORMAT statements. |

4., FUNCTION defining statements;

5. Subprogram statements.

The proper usage and construction of the various

types of statements are described in Sections 5
through 9.

SECTION 3

DATA REPRESENTATION / STORAGE FORMAT

The FORTRAN Language prescribes a definitive method for
identifying data used in FORTRAN programs by name and type.

3.1
j.l.l

3.1.2

DATA NAMES AND TYPES

NAMES

1. Constant - An explicitly stated datum.
2. Variable - A symbolically identified datum.

3. Array - An ordered set of data in 1, 2 or 3
dimensions.

4. Array Element - Cne member of the set of data
of an array.

TYPES
Integer -- Precise representation of integral
numbers (positive, negative or zero) having

precision to 5 digits in the range -32768 to +32767
inclusive (-2**15 to 2**15-1).

Real -- Approximations of real numbers (positive,
negative or zero) represented in computer storage
in 4-byte, floating-point form. Real data are

precise to 7+ sigrificant digits and their
magnitude may lie betwesrn the approximate limits of
10**-38 and 10**38 (2**-127 and 2**127).

Double Precision -- Approximations of real numbers
(positive, negative or zero) represented in
computer storage in 8-byte, floating-point form.
Double Precision data are precise to 16+
significant digits in the same magnitude range as
real data.

Logical -- One byte representations of the truth
values "TRUE" or “FALSE" with "FALSE defined to
have an internal representation of zero. The
constant .TRUE. has the wvalue -1, however any
non-zero value will be treated as .TRUE. in a
Logical 1IF statement. 1In addition, Logical types
may be used as one byte signed integers in the
range -128 to +127, inclusive.

MICROSOFT 8888 FORTRAN-IV : Page 13

5.

Hollerith -- A string of any number of characters
from the computer's character set. All characters
including blanks are significant. Hollerith data
require one byte for storage of each character in
the string.

CONSTANTS

FORTRAN constants are identified explicitly by
stating their actual value. The plus (+) character
need not precede positive valued constants.

Formats for writing constants are shown in Table
3-1.

“

MICROSOFT 8080 FORTRAN-IV Page 14

Table 3-1. CONSTANT FORMATS

TYPE FORMATS AND RULES OF USE EXAMPLES
INTEGER 1. 1 to 5 decimal digits -763
interpreted as a deci- 1
mal number. +00672
2. A preceding plus (+) or -32768
minus (-) sign is op- +32767
tional.

3. No decimal point (.) or
comma (,) is allowed.

4. Value range: -32768

through +32767 (.i.e.,
~2**]15 through 2**15-1).

REAL 1. A decimal number with 345,

precision to 7 digits -.345678

and represented in one +345.678

of the following forms: +.3E3
-73E4

a. + or -.f + or -i.f
b. + or -i.,E+ or -e
+ or -.fE+ or -e
+ or -i.fE+ or -e

where i, f, and e are
each strings represent-
ing integer, fraction,
and exponent respective-
ly.

2. Plus (+) and minus (-)
characters are optional.

3. In the form shown in 1 b
above, if r represents any
of the forms preceding
E+ or -e (i.e., rE+ or -e),
the value of the constant
is interpreted as r times
1p**e, where -38<=e<=38,

4. If the constant preceding
Ef or -e contains more
significant digits than

MICROSOFT 8888 FORTRAN-IV Page

DOUBLE
PRECISION

LOGICAL

LITERAL

HEXADECIMAL

the precision for real
data allows, truncation
occurs, and only the

most significant digits
in the range will be rep-

resented.
A decimal number with +345.678
precision to 16 digits. All +.3D3
formats and rules are identi- -73D4

cal to those for REAL con-
stants, except D is used in
place of E. Note that a real
constant is assumed single pre-
cision unless it contains a

"D" exponent.

.TRUE. generates a non-zero .TRUE.
byte (hexadecimal FF) and .FALSE.
.FALSE. generates a byte in

which all bits are 8.

If logical values are

used as one-byte integers, the
rules for use are the same as
for type INTEGER, except that
the range allowed is -128 to
+127, inclusive.

In the literal form, any

number of characters may be

enclosed by single guotation

marks. The form is as follows:
'X1X2X3...Xn'

where each Xi is any charac-
ter other than '. Two
quotation marks in succession
may be used to represent the
quotation mark character
within the string, i.e.,

if X2 is to be the guotation
mark character, the string
appears as the following:

'X1''X3...%Xn’'

l. The letter Z or X z2'12°
followed by a single quote,
up to 4 hexadecimal X'ABlF'

digits (6-9 and A-F) and a Z'FFFF'

15

MICROSOFT 8088 FORTRAN-IV Page 16

single quote is recognized
as a hexadecimal value. X'1p!

2. A hexadecimal constant is
right justified in its storage
value.

MICROSOFT 80808 FORTRAN-1IV Page 17

3.3

VARIABLES

Variable data are identified in FORTRAN statements
by symbolic names. The names are unique strings of
from 1 to 6 alphanumeric characters of which the
first is a letter.

NOTE

System variable names and runtime
subprogram names are distinguished from
other variable names in that they begin
with the dollar sign character ($). It is
therefore strongly recommended that in
order to avoid conflicts, symbolic names in
FORTRAN source programs begin with some
letter other than "$".

Examples:
I5, TBAR, B23, ARRAY, XFM79, MAX, AlSC

Variable data are classified into four types:
INTEGER, REAL, DOUBLE PRECISION and LOGICAL. The
specification of type is accomplished in one of the
following ways: ‘

1. 1Implicit typing in which the first letter of
the symbolic name specifies 1Integer or Real
type. Unless explicitly typed (2., below),
symbolic names beginning with I, J, K, L, M or
N represent Integer variables, and symbolic
names beginning with letters other than I, J,
K, L, M or N represent Real variables.

Integer Variables

ITEM
Jl
MODE
K123
N2

MICROSOFT 8088 FORTRAN-IV Page 18

Real Variables

BETA
H2
ZAP
AMAT
XID

2. Variables may be typed explicitly. That 1is,
they may be given a particular type without
reference to the first letters of their names.
Variables may be explicitly typed as INTEGER,
REAL, DOUBLE PRECISION or LOGICAL. The
specific statements used in explicitly typing
data are described in Section 6.

Variable data receive their numeric value assignments during
program execution or, initially, in a DATA statement
(Section 6).

Hollerith or Literal data may be assigned to any type

variable. Sub-paragraph 3.6 contains a discussion of
Hollerith data storage.

3.4 ARRAYS AND ARRAY ELEMENTS

An array is an ordered set of data characterized by
the property of dimension. An array may have 1, 2
or 3 dimensions and iIs identified and typed by a
symbolic name in the same manner as a variable
except that an array name must -be so declared by an
“array declarator." Complete discussions of the
array declarators appear in Section 6 of this
manual. An array declarator also indicates the
dimensionality and size of the array. An arra

element is one member of the data set that makes up
an array. Reference to an array element in a
FORTRAN statement is made by appending a subscript
to the array name. The term array element is
synonymous with the term subscripted variable used
in some FORTRAN texts and reference manuals.

An initial value may be assigned to any array
element by a DATA statement or its value may be
derived and defined during .program execution.

3.5 SUBSCRIPTS

A subscript follows an array name to uniquely

MICROSOFT 8080 FORTRAN-IV Page 19

identify an array element. 1In use, a subscript in
a FORTRAN statement takes on the same
representational meaning as a subscript in familiar
algebraic notation.

Rules that govern the use of subscripts are as
follows:

l. A subscript contains 1, 2 or 3 subscript
expressions (see 4 below) enclosed in
parentheses.

2. 1If there are two or three subscript expressions
within the parentheses, they must be separated
by commas.

3. The:number of subscript expressions must be the
same as the specified dimensionality of the
Array Declarator except in EQUIVALENCE
statements (Section 6).

4. A subscript expression is written in one of the
following forms:

K C*v V-K
VvV C*V+K C*V-K
V+K

where C and K are integer constants and V is an
integer variable name (see Section 4 for a
discussion of expression evaluation).

5. Subscripts themselves may not be subscripted.
Examples:

X(2*3-3,7) A(1,J,K) I(20) C(L-2) Y(I)

3.6 DATA STORAGE ALLOCATION

Allocation of storage for FORTRAN data is made in
numbers of storage units. A storage unit is the
memory space required to store one real data value
(4 bytes).

Table 3-2 defines the word formats of the three
data types.

Hexadecimal data may be associated (via a DATA
statemept) . with any type data. Its storage
allocation is the same as the associated datum.

Hollerith or literal data may be associated with
any data type by wuse of DATA initializaton

MICROSOFT 8080 FORTRAN-IV Page 20

statements (Section 6).

Up to eight Hollerith characters may be associated
with Double Precision type storage, up to four with
Real, up to two with Integer and one with Logical
type storage.

MICROSOFT 8#80 FORTRAN-IV Page 21

TYPE

INTEGER

LOGICAL

REAL

TABLE 3-2. STORAGE ALLOCATION BY DATA TYPES

ALLOCATION
2 bytes/ 1/2 storage unit
S Binary Value

Negative numbers are the 2's complement of
positive representations.

1 byte/ 1/4 storage unit
Zero (false) or non-zero (true)

A non-zero valued byte indicates true (the
logical constant .TRUE. is represented by
the hexadecimal value FF). A zero valued
byte indicates false.

When used as an arithmetic value, a Logical
datum 1is treated as an Integer in the range

4 bytes/ 1 storage unit

Characteristic S Mantissa
Mantissa ~ (continued)

The first byte is the characteristic
expressed in excess 20808 (octal) notation;
i.e., a value of 2080 (octal) corresponds to a
binary exponent of @. Values less than 200
(octal) correspond to negative exponents, and
values greater than 200 correspond to
positive exponents. By definition, if the
characteristic 1is zero, the entire number is
zero.

The next three bytes constitute the mantissa.
The mantissa 1is always normalized such that
the high order bit is one, eliminating the
need to actually save that bit. The high bit
is used instead to indicate the sign of the

number. A one indicates a negative number,
and zero indicates a positive number. The
mantissa 1is assumed to be a binary fraction
whose binary point is to the 1left of the
mantissa.

MICROSOFT 80686 FORTRAN-IV Page 22

DOUBLE
PRECISION

8 bytes/ 2 storage units

The internal form of Double Precision data is
identical with that of Real data except
Double Precision uses 4 extra bytes for the
matissa.

MICROSOFT 80808 FORTRAN-IV Page 23

SECTION 4

FORTRAN EXPRESSIONS

A FORTRAN expression is composed of a single operand or a
string of operands connected by operators. Two expression
types --Arithmetic and Logical-- are provided by FORTRAN.
The operands, operators and rules of use for both types are
described in the following paragraphs.

4.1 ARITHMETIC EXPRESSIONS

The following rules define all permissible
arithmetic expression forms:

1. A constant, variable name, array element
reference or FUNCTION reference (Section 9)
standing alone is an expression.

Examgles:
S(I) JOBNO 217 17.26 SQRT (A+B)

2. If E is an expression whose first character is
not an operator, then +E and -E are called
signed expressions.

Examples
-8 +JOBNO =217 +17.26 -SQRT (A+B)

3. If E is an expression, then (E) means the
quantity resulting when E is evaluated.

Examples:
(-a) - (JOBNO) - (X+1) (A-SQRT (A+B))

4. If E is an unsigned expression and F is any
expression, then: F+E, F-E, F*E, F/E and F**E
are all expressions.

Examples:

-(B(I,J)+SQRT (A+B(K,L)))
1.7E-2*%* (X+5.0)
=(B(I+3,3*3+5)+A)

MICROSOFT 8080 FORTRAN-IV Page 24

5.

An evaluated expression may be Integer, Real,
Double Precision, or Logical. The type 1is
determined by the data types of the elements of
the expression. If the elements of the
expression are not all of the same type, the
type of the expression 1is determined by the
element having the highest type. The type
hierarchy (highest to 1lowest) is as follows:
DOUBLE PRECISION, REAL, INTEGER, LOGICAL.

Expressions may contain nested parenthesized
elements as in the following:

B* (Z= ((Y+X) /T)) **J

where Y+X is the innermost element, (Y+X)/T is
the next innermost, Z-((Y+X)/T) the next. 1In
such expressions, care should be taken to see
that the number of 1left parentheses and the
number of right parentheses are equal.

EXPRESSION EVALUATION

Arithmetic expressions are evaluated according to
the following rules:

1.

Parenthesized expression elements are evaluated
first. If parenthesized elements are nested,
the innermost elements are evaluated, then the
next innermost until the entire expression has
been evaluated. '

Within parentheses and/or wherever parentheses
do not govern the order or evaluation, the
hierarchy of operations in order of precedence
is as follows:

a. FUNCTION evaluation
b. Exponentiation

€. Multiplication and Division
d. Addition and Subtraction

Example:

The expression

A*(Z-((Y+R)/T)) **J+VAL

is evaluated in the following sequence:

MICROSOFT 8080 FORTRAN-IV

Y+R = el
(el) /T = e2
Z-e2 = e3
e3**J = e4
A*ed = e5

e5+VAL = eb6

3. Wherever operations
involved, evaluation
right.

Examples:

Expression

WX /Y*Z
B**72-4 ,*A*C
X-Y-2Z
X/Y/2Z
—X*%3

4. The expression X**y**jg

Page 25

of equal hierarchy are

proceeds from left to

Evaluated as

(W*X) /Y*2Z
(B**Z)-((4.*A) *C)
(X-Y)-2Z

(X/Y) /2

- (X**3)

is not allowed. It

should be written as follows:

(x**Y) **Z

or X** (y**xgz)

5. Use of an array element reference requires the

evaluation of its

subscript. Subscript

expressions are evaluated under the same rules

as other expressions.

LOGICAL EXPRESSIONS

A Logical Expression may be any of the following:

l. A single Logical Constant (i.e., .TRUE. or

.FALSE.), a Logical
Element or Logical
FUNCTION, Section 9).

variable, Logical A.ray
FUNCTION reference (see

2. Two arithmetic expressions separated by a

relational operator
expression).

3. Logical operators

(i.e., a relational

acting upon logical

constants, 1logical variables, 1logical array

elements, logical

FUNCTIONS,

relational

expressions or other logical expressions.

MICROSOFT 8080 FORTRAN-IV ' Page 26

4.3.2

The value of a logical expression is always either
.TRUE. or .FALSE.

RELATIONAL EXPRESSIONS

The general form of a relational expression is as
foliows:

el r e2
where el and e2 are arithmetic expressions and r is

a relational operator. The six relational
operators are as follows:

.LT. Less Than

.LE. Less than or equal to
.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

The value of the relational expression is .TRUE.
if the condition defined by the operator is met.
Otherwise, the value is .FALSE.

Examgles:

A.EQ.B
(A**J) .GT. (ZAP* (RHO*TAU-ALPH))

LOGICAL OPERATORS

Table 4-1 lists the logical operations. U and V
denote logical exzpressions.

MICROSOFT 8@88 FORTRAN-IV Page 27

Table 4-1. Logical Operations

.NOT. U The value of this expressiocn is the
logical complement c¢cf U (i.e., 1
bits become § and @ bits become 1).

U.AND.V The value of this expression is the
logical product of U and V (i.e.,
there is a 1 bit in the result only
where the corresponding bits in both
U and V are 1.

U.0R.V The value of this expression is the
logical sum of U and V (i.e., there
is a 1 in the result if the

corresponding bit in U or V is 1 or
if the corresponding bits in becth U
and V are 1.

U.XOR.V The value of this expression is the
exclusive OR of U and V (i.e., there
is a one in the result if the
corresponding bits in U and V are 1
and @ or @ and 1 respectively.

Examples:
If U = 01101100 and V = 11801001 , then

.NOT.U = 10010011
U.AND.V = 01001000
U.OR.V = 11101101
U.XOR.V = 101001081

MICROSOFT 8088 FORTRAN-IV Page 28

The following are additional <considerations for
construction of Logical expressions:

1.

Any Logical expression may be enclogzad in
parentheses. However, a Logical expression to
which the .NOT. operator is applied must be
enclosed in ©parentheses if it contains two or
more elements.

In the hierarchy of operations, parentheses may
be used to specify the ordering of the
expression evaluation. Within parentheses, and
where parentheses do not dictate evaluation
order, the order is understood to be as
follows:

FUNCTION Reference

Exponentiation (**)

Multiplication and Division (* and /)
Addition and Subtraction (+ and =)
.LT7., .LE., .EQ., .NE., .GT., .GE.
.NOT.

.AND.

.OR., .XOR.

SO QO T

Examples:
The expression

X .AND. Y .OR. B(3,2) .GT. 2%

is evaluated as

el = B(3,2).GT.2Z
e2 = X .AND. Y
el = e2 .0OR. el

The expression
X .AND. (Y .OR. B(3,2) .GT. 2)

is evaluated as

el = B(3,2) .GT. Z
e2 =Y .OR. el
e3 = X .AND. e2

It is invalid to have two contiguous logical
operators except when the second operator is
.NOT.

That is,

.AND. .NOT.

MICROSOFT 8088 FORTRAN-IV Page 29

and
.OR. .NOT.
are permitted,
Example:
A .AND. .NOT.B is permitted

A.AND. .OR.B is not permitted

HOLLERITH, LITERAL, AND HEXADECIMAL CONSTANTS IN
EXPRESSIONS

Hollerith, Literal, and Hexadecimal constants are
allowed in expressions in place of Integer
constants. These special constants always evaluate
to an Integer value and are therefore limited to a

[*]

length of two bytes. The only exceptions to this
are:

l. Long Hollerith or Literal constants may be used
as subprogram parameters.

2. Hollerith, Literal, or Hexadecimal constants
may be up to four bytes long in DATA statements
when associated with Real variables, or up to

eight bytes long when associated with Double
Precision variables.

MICROSOr 8083 FORTRAN-IV Page 30

SECTION 5

REPLACEMENT STATEMENTS

Wl

Replacement statements define computations and are used
similarly to ecuations in normal mathematical notation.
They arc of the following form:

v = e

where v is any variable or array element and e 1is an
expression,

FORTRAN semantics defines the equality sign (=) as meaning
to be replaced by rather than the normel is ccuivaelent to.
Thus, the object progrem instructions generat~d by a
replacement statement will, when xecuted, evaluate the
expression on the richt of the eguality sign and place that
result in the storage space allocated to tihe variable or
array element on the left of the eguality sign.

The following conditions apply to replacement statements:
1. Both v and the eguality sign must eppear on the
same line. This holds even when the statement is
part of a logical IF statement (section 7).

Example:

C IN A REPLACEMENT STATEMENT THE '='

C MUST BE IN THE INITIAL LINE.
A(5,3) =
1 B(7,2) + SIN(C)

The 1line containing v= must be the initial line of
the statement unless the statement 1is part of a
logical 1IF statement. In that case the v= must
occur no later than the end of the first line after
the end of the IF.

2. If the data types of the wvariable, v, and the
expression, e, are different, then the value
determined by the expression will be converted, if
possible, to conform to the typing of the variable.

Table 5-1 shows whichh type expressions may be
equated to which type of variable. Y indicates a
valid replacement and N indicates an invalid
replacement. Footnotes to Y indicate conversion

considerations.

eyl e

MICROSOFT 8688 FORTRAN-IV Page 31

Table 5-1. Replacement By Type

Expression Types (e)

Variable Integer Real Logical Double
Types

Integer Y Ya Yb Ya
Real Yc Y Yc Ye
Logical Yd Ya Y Ya
Double Yc Y Yc Y

a. The Real expression value is converted to Integer,
truncated if necessary to conform to the range of
Integer data.

b. The sign is extended through the second byte.

C. The variable is assigned the Real approximation of
the Integer, value of the expression.

d. The variable is assigned the truncated value of the
Integer expression (the low-order byte is used,
regardless of sign).

€. The variable is assigned the rounded value of the
Real expression.

MICROSOFT 8880 FORTRAN-IV Page 32

SECTION 6

SPECIFICATION STATEMENTS

Specification statements are non-executable, non-generative
stotements which define data types of variables and arravse,
specify array dimensionality and size, allocate data storage
or otherwise supply determinative information to the FORTRAN
processor. DATA intialization statements are
non-executable, but generate object program data and
establish initial values for variable data.

6.1 SPECIFICATION STATEMENTS

There are six kinds of specification statements.
They are as follows:

Type, EXTERNAL, and DIMENSION statements
COMMON statements

EQUIVALENCE statements

DATA initialization statements

All specification statements are grouped &t the
beginning of a program unit and must be ordered as
they appear above. Specification statements may be
preceded only by a FUNCTION, SUBROUTINE, PROGRAM or
BLOCK DATA statement. All specification statements
must precede statement functions and the first
executable statement.

6.2 ARRAY DECLARATORS

Three kinds of specification statements may specify
array declarators. These statements are the
following: :

Type statements
DIMENSION statements
COMMON statements

Of these, DIMENSION statements have the declaration
of arrays as their sole function. The other two
serve dual purposes. These statements are defined
in subparagraphs 6.3, 6.5 and 6.6.

Agray Qeclarators are used to specify the name,
dimensionality and sizes of arrays. An array may
be declared only once in a program unit.

An array declarator has one of the following forms:

MICROSOFT 808J FORTRAN-IV Page 33

ui (k)

ui (kl,k2)

ui (kl,k2,k3)
where ui is the name of the array, c¢alled the
declarator name, and the k's are integer constents.

Array storage allocation is established uron
appearance of the array declarator. Such storsge
is allocated linearly bv the FORTRAN processor
where the order of ascendancy is determirned by the
first subscript varying most rapidly and the last
subscript varying least rapidly.

For example, if the array declarator AMAT(3,2,2)
appears, storage is allocated for the 12 elements
in the -following order:

AMAT(1,1,1), AMAT (2,1,1), AMAT (3,1,1), AMAT(1,2,1),
AMAT (2,2,1), AMAT (3,2,1), AMAT (1,1,2), AMAT(2,1,2)
AYMAT (3,1,2), AMAT (1,2,2), AMAT(2,2,2), AMAT(3,2,2)

4

TYPE STATEMENTS

Variable, array and FUNCTION names are
automatically typed Integer or Real by the
'Predefined' convention unless they are changed by
Type statements. For example, the type is Integer
if the first letter of an item is I, J, K, L, M or
N. Otherwise, the type is Real.

Type statements provide for overriding or
confirming the pre-defined convention by specifying
the type of an item. 1In addition, these statements
may be used to declare arrays.

Type statements have the following general form:
t vl,v2,...vn

where t represents one of the terms INTEGER,
INTEGER*1, INTEGER*2, REAL, REAL*4, REAL*8, DOURLE
PRECISION, LOGICAL, LOGICAL*], LOGICAL*2, or BYTE.
Each v is an array declarator or a variable, array
Oor FUNCTION name. The INTEGER*1, INTEGER*2,
REAL*4, REAL*3, LOGICAL*1,and LOGICAL*?2 types are
allowed for readability and compatibility with
other FORTRANSs . BYTE, INTEGER*], LOGICAL*1, and
LOGICAL are all eguivalent; INTEGER*2, LOGICAL*2,
and INTEGER are equivalent; REAL and REAL*4 are

equivalent; DOUBLE PRECISION and REAL*8 are
eguivalent.

gxamgle:

MfCROSOFT 8080 FORTRAN-IV

Page 34
REAL AMAT(3,3,5) ,BX,IETA,KLPH
NOTE

1. AMAT and BX are redundantly tymed.

2. IETA and KLFR ~=re uriconaitionally
declared Rcal. :

3. AMANT(3,3,5) is a constant array
declarator specifying an array of 45

elements.

Example:

INTEGER M1, HT, JMP(15), FL

NOTE

M1l is redundantly typed here. Typing of HT

and FL by the pre-defincd convention

overridden by their appearance in

1

the

INTEGER statement. JMP(15) is a constent
array declarator. It redundantlv tvues the
array elements as Integer and communicates
to the processnr the storage requirements

and dimensionality of the array.

Example:

LOGICAL L1, TEMP

NOTE

All variables, arrays or FUNCTIONs reguired

to be typed Logical must oevpear in

a

LOGICAL statement, since no’starting letter
indicates these types by the default

convention.

EXTERNAL STATEMENTS

EXTERNAL statements have the following form:

MICROSOFT 8880 FORTRAN-IV Page 35

EXTERNAL ul,u2,...,un

where each ui is a SUBROUTINE, BLOCK DATA or
FUNCTICN name. When the name of a subprogram is
used as an argument in a subprogram reference, it

must have appeared in a preceding EXTERNAL
statement.

When a BLOCK DATA subprogram is to be included in a
program load, 1its name must have appeared in an
EXTERNAL statement within the main program unit.

For example, if SUM and AFUNC are subprogram names
to be used as arguments in the subroutine SUBR, the
following statements would appear in the <calling
program unit:

EXTERNAL SUM, AFUNC

CALL SUBR(SUM,AFUNC,X,Y)

DIMENSION STATEMENTS

A DIMENSION statement has the following form:
DIMENSION u2,u2,u3,...,un
where each ui is an array declarator.
Example:
DIMENSION RAT (5,5) ,BAR(20)

This statement declares two arrays - the 25 element
array RAT and the 20 element array BAR.

COMMON STATEMENTS

COMMON statements are non-executable, storage
allocating statements which assign variables and
arrays to a storage area called COMMON storage and

provide the facility for various program units to
share the use of the same storage ares.

COMMON statements are expressed

in th f i
form: e ollowing

MICROSOFT 8080 FORTRAN-IV Page 36

COMMON /Y1/Al/Y2/A2/.../¥n/An

where each Yi is a COMMON block storage name and
each Ai 1is a sequence of variable names, array
names or constant array declarators, separated by
commas. The elements in Ai make up the COMMON
block storage area specified by the name Vi. 1f
any Yi 1is omitted leaving two consecutive slash
characters (//), the block of storage sc indicated
is called blank COMMON. 1If the first block name
(Yl) is omitted, the two slashes may be omitted.

Example:
COMMON /AREA/A,B,C/BDATA/X,Y,Z,
X FL,ZAP(30)

In this example, two blocks of COMMON storage are
allocated - AREA with space for three variables and
BDATA, with space for four variables and the 30
element array, ZAP.

Example
COMMON //21,B1/CDATA/Z0OT (3,3)
X //T2,23

In this example, Al, Bl, T2 and Z3 are assigned to
blank COMMON in that order. The pair of slashes
preceding Al could have been omitted.

CDATA names COMMON block storage for the nine
element array, ZOT and thus 2ZOT (3,3) is an array
declarator. ZOT must not have been previously

declared. (See "Array Declarators," Paragrapn
6.3.)

Additional Considerations:

1. The name of a COMMON block may appear more than
once 1in the same COMMON cstatement, or in more
than one COMMON statement.

2. A COMMON block name is made up of from 1 to 6
alphanumeric characters, the first of which
must be a letter.

3. A COMMON block name must be different from any
subprogram names used throughout the program.

4. The size of a COMMON area may be increased by
the use of EQUIVALENCE statements. Sce
"EQUIVALENCE Statements," Paragraph 6.7.

N

MICROSOFT 8083 FORTRAN-IV Page 37

5. The lengths of COMMON blocks of the same name
need not be identical in all program units
where the name appears. However, 1f the
lengths differ, the program unit svecifying the
greatest length must be loaded first (see the
discussion of LINK-80 in the User's Guide).
The length of a COMMON area is the number of
storage units required to contain the variables
and arrays declared in the COMMON statement (or
statements) unless expanded by the wuse of
EQUIVALENCE statements.,

EQUIVALENCE STATEMENTS

Use of EQUIVALENCE statements permits the sharing
of the same storage unit by two or more entities.
The general form of the statement is as follows:

EQUIVALENCE (ul),(u2),...,(un)

where each ui reépresents a sequence of two or more
variables or array elements, separated by commas.
BEach element in the sequence is assigned the same
storage unit (or portion of a storage unit) by the
processor. The order in which the elements appear
is not significant.

Examgle:

EQUIVALENCE (A,B,C)

The variables A, B ang C will share the same
storage unit during object program execution.

If an array element is wused in an EQUIVALENCE
statement, the number of subscripts must be the
Same as the number of dimensions established by the
array declarator, or it must be one, where the onec
subscript specifies the array element's number
relative to the first element of the array.

Example:

If the dimensionaliity of an array, 2, has been
declared as Z2(3,3) then in an EQUIVALENCE statement
Z(6) and Z(3,2) have the same Meaning.

Additonal Considerations:

1. The subscripts of array elements must be
integer constants.

MICROSOFT 8030 FORTRAN-IV Page 38

2. An element of a multi-dimensional array may be
referred to by a single subscript, if desired.

3. Variables may be assigned to a COMMOW block
through EQUIVALENCE statements.

Example:

COMMON /X/A,B,C
EQUIVALENCE (A,D)

In this case, the variables A and D share the
first storage unit in COMMON block X. .
4, EQUIVALENCE statements can increase the size of
a block indicated by a COMMON statement by
adding more elements to the end of the block.

Example:

DIMENSION R(2,2)
COMMON /Z/W,X,Y
EQUIVALENCE (Y,R(3))

The resulting COMMON block will have the
following configuration:

Variable Storage Unit

W=L(1,1) 0
X =R(2,1) 1
Y = R(1,2) 2

R(2,2) 3

The COMMON block established by the COMMON
statement contains 3 storage units. It is
expanded to 4 storage units by the EQUIVALENCE
statement.

COMMON block size may be increased only from
the last element established by the COMMON
statement forward; not from its first element
backward.

Note that EQUIVALENCE (X,R(3)) would be invalid
in the example. The COMHMON statement
establicshed W as the first element in the
COMMON block and an attempt to make X and R(3)

eguivalent would be an attempt to make R()l) the
first element.

MICROSOFT 8888 FORTRAN-IV Page 39

5. It is invalid to EQUIVALENCE two elements of
the same array or two elements belonging to the
same or different COMMON blocks.

Example:

DIMENSION XTABLE (286), D(5)
COMMON A,B(4)/7BP/C,X

EQUIVALENCE (XTABLE (6) ,A(7)
X B(3) ,XTABLE(5)),
Y (B(3),D(5))

This EQUIVALENCE statement has the following
errors:

l. It attempts to EQUIVALENCE two elements of the
same array, XTABLE (6) and XTABLE (15) .

2. It attempts to EQUIVALENCE two elements of the
same COMMON block, A(7) and B(3).

3. Since A is not an array, A(7) is an illegal
reference.

4. Making B(3) equivalent to D(5) extends COMMON
backwards from its defined starting point.

DATA INITIALIZATION STATEMENT

The DATA initialization statement is a
non-executable statement which provides a means of
compiling data values into the object program and
assigning these data to variables and array
elements referenced by other statements.

The statement is of the following form:
DATA list/ul,uz,...,un/,list.../uk,uk+l,...uk+n/

where "ligt™" Lepresents a list of variable, array
or array element names, and the ui are constants
¢orresponding in number to the elements in the
list,. An exception to the one-for-one
correspondence of list items to constants is that
an array name (unsubscripted) may appear in the

MICROSOFT 8080 FORTRAN-IV Page 49

list, and as many constants as necessary to fill
the array may appear in the corresponding position
between slashes. Instead of ui, it is permissible

to write k*ui in order to declare the same
constant, ui, K times in succession. Kk must be a
positive integer. Dummy arguments may not appear

in the list.

Example:

DIMENSION C(7)
DATA A, B, C(1),C(3)/14.73,
X -8.1,2*7.5/

This implies that
A=14.73, B=-8.1, C(1)=7.5, C(3)=7.5

The type of each constant ui must match the type of
the corresponding item in the list, except that a
Hollerith or Literal constant may be paired with an
item of any type.

When a Hollerith or Literal constant is wused, the
number of characters in its string should be no
greater than four times the number of storage units
required by the corresponding item, i.e., 1
character for a Logical variable, up to 2
characters for an Integer variable and 4 or fewer
characters for a Real variable.

If fewer Hollerith or Literal characters are
specified, trailing blanks are added to fill the
remainder of storage.

Hexadecimal data are stored in a similar fashion.
If fewer Hexadecimal characters are used,
sufficient leading zeros are added to fill the
remainder of the storage unit.

The examples below illustrate many of the features
of the DATA statement.

MICROSOFT 8288 FORTRAN-IV Page 41

DIMENSION HARY (2)
DATA HARY,B/ 4HTHIS, 4H OK.
1 +7.86

REAL LIT(2)

LOGICAL LT,LF

DIMENSION H4(2,2),PI3(3)

DATA Al,B1,K1,LT,LF,H4(1,1),H4(2,1)
1 H4(1,2),84(2,2),P13/5.9,2.5E-4,
2° 64, .FALSE., .TRUE.,1.75E-3,

3 f.85E-1,2*75.06,1.,2.,3.14159/
4 LIT(1)/'NOGO'

MICROSOFT 8080 FORTRAN-IV Page 42

SECTION 7

FORTRAN CONTROL STATEMENTS
FORTRAN control statements are executable statements which
affect and guide the logical flow of a FORTRAN program. The
statements in this category are as follows:
1. GO TO statements:
1. Unconditional GO TO
2. Computed GO TO

3. Assigned GO TO

2. ASSIGN
3. IF statements:
1. Arithmetic IF

2. Logical IF

4. DO

5. CONTINUE

6. STOP
7. PAUSE
8. CALL
9. RETURN

When statement labels of other statements are a part of a
control statement, such statement labels must be associated
with executable statements within the same program unit in
which the control statement appears.

7.1 GO TO STATEMENTS

7.1.1 UNCONDITIONAL GO TO

Unconditional GO TO statements are used whenever
control is to be transferred unconditionally to
some other statement within the program unit.

MICROSOFT 80660 FCRTRAN-IV Page 43

7.1‘2

The statement is of the following form:
GO TO k

where k is the statement 1label of an executable
statement in the same program unit.

Example:

GO TO 376
316 A(7) = V1 -a(3)

376 A(2) =VECT
GO TO 319

In these statements, statement 376 1is ahead of
statement 310 in the logical flow of the program of
which they are a part.

COMPUTED GO TO

Computed GO TO statements are of the form:
GO TO (k1l,k2,...,n),]

where the ki are statement labels, and j 1is an
integer variable, 1 < j < n.

This statement causes transfer of control to the
statement labeled kj. If 3 < 1 or j > n, control

will be passed to the next statement following - the
Computed GOTO.

Example:
J=3

GO TO(7, 70, 700, 7000, 70800), J
310 J=5
GO TO 325

When J = 3, the computed GO TO transfers control to
statement 700. Changing J to equal 5 changes the
transfer to statement 70000, Making J = 0 or J = ¢

gggld cause control to be transferred to statement

ASSIGNED GO TO

Assigned GO TO statements are of the following

MICROSOFT 8880 FORTRAN-IV Page 44

form:
GO TO j,(kl,k2,...,kn)
or

GOTO J

where J is an integer variable name, and the ki are
statement labels of executable statements. This
statement causes transfer of control to the

statement whose label is equal to the current value
of J.

Qualifications

1. The ASSIGN statement must logically precede an
assigned GO TO.

2. The ASSIGN statement must assign a value to J

which is a statement label included in the list
of k's, if the list is specified.

Example:
GO TO LABEL, (80,90, 100)

Only the statement labels 88, 90 or 100 may be
assigned to LABEL.

ASSIGN STATEMENT

This statement is of the following form:

ASSIGN j TO i

where j is a statement 1label of an executable
statement and i is an integer variable.

The statement is wused in conjunction with each
assigned GO TO statement that contains the integer
variable i. Wwhen the assigned GO TO is executed,

control will be transferred to the statement
labeled j.

Examgle:
ASSIGN 100 TO LABEL

ASSIGN 9@ TO LABEL

MICROSOFT

7.3.2

82€0 FORTRAN-IV Page 45
GO TO LABEL, (80,90,1600)

IF STATEMENT
IF statements transfer control to one of a series
of statements depending upon a condition. Two
types of IF statements are provided:

Arithmetic IF

Logical IF

ARITHMETIC IF

The arithmetic IF statement is of the form:
IF(e) ml,m2,m3

where e is an arithmetic expression and ml, m2 and
m3 are statement labels.

Evaluation of expression e determines one of three
transfer possibilities:

If e is: Transfer to:
< 9 ml
=0 m2
> 9 m3
Examples:
Statement Expression Value Transfer to
IF (A)3,4,5 15 5
IF (N-1)50,73,9) 73
IF (AMTX(2,1,2))7,2,1 -256 7

LOGICAL IF
The Logical IF statement is of the form:

IF (u)s
where u is a Logical expression and s 1is any
executable statement except a DO statement (see
7.4) or another Logical IF statement. The Logical
expression u is evaluated as .TRUE. or .FALSE.
Section 4 contains a discussion of Logical
expressions.
Control Conditions:

If u is FALSE, the statement s 1is ignored and

MICROSOFT 8088 FORTRAN-IV Page 46

control goes to the next statement following the
Logical IF statement. 1If, however, the expression
is TRUE, then control goes to the statement s, and
subsequent program control follows normal
conditions.

If s is a replacement statement (v = e, Section 5),
the variable and equality sign (=) must be on the
same line, either immediately following IF(u) or on

a separate <continuation line with the line spaces
following IF(u) left blank. See example 4 below.

ExamEleé:
1. IF(I.GT.20) GO TO 115
2. 1F(Q.AND.R) ASSIGN 18 TO J
3. 1IF(Z) CALL DECL(A,B,C)
4., IF(A.ORB.LE.PI/2.)I=J
IF(A.OR.B.LE.PI/2)

X I =J
DO STATEMENT
The DO statement, as implemented in FORTRAN,
provides a method for repetitively executing a

series of statements. The statement takes of one
of the two following forms:

1) DO k 1 = ml,m2,m3
or
2) DO k i = ml,m2

where k is a statement label, i is an integer or
logical wvariable, and ml, m2 and m3 are integer
constants or integer or logical variables.

If m3 is 1, it may be omitted as in 2) above.

The following conditions and restrictions govern
the use of DO statements:

1. The DO and the first comma must appear on the
initial line.

2. The statement labeled k, called the terminal
statement, must be an executable statement.

MICROSOFT 8080 FORTRAN-1IV

3'

Page 47

physically foliow
the executable

The terminal statement must
its associated DO, and
statements following the DO, up to and
including the terminal statement, constitute
the range of the DO statement.

The terminal statement may not be an Arithmetic
IF, GO TO, RETURN, STOP, PAUSE or another DO.

If the terminal statement is a logical IF and
its expression is .FALSE., then the statements
in the DO range are reiterated.

If the expression is .TRUE., the statement of
the logical IF 1is executed and then the
statements in the DO range are reiterated. The

statement of the logical IF may not be a GO TO,
Arithmetic IF, RETURN, STOP or PAUSE.

The controlling integer variable, i, is called
the index of the DO range. The index must be
positive and may not be modified by any
statement in the range.

If ml, m2, and m3 are Integer*l variables or
constants, the DO loop will execute faster and
be shorter, but the range 1is 1limited to 127
iterations. For example, the loop overhead for
a DO loop with a constant 1limit and an
increment of 1 depends upon the type of the
index variable as follows:

Index Variable Overhead

Type Microseconds .Bytes
INTEGER*2 35.5 19
INTEGER*1 24 14

During the first execution of the statements in

the DO range, i 1is equal to ml; the second
execution, i = ml+m3; the third, i=ml+2#*m3,
etc., until i is equal to the highest value in

this sequence less than
then the DO 1is said
statements in the DO
executed at least once,

When the DO has been
to the statement
statement, otherwise
the first executable
statement.

Example:

satisfied,
following

control transfers back to

statement following the DO

or equal to m2, and

to be satisfied. The
range will always be
even if ml < m2.

control
the

passes
terminal

MICROSOFT 3282 FORTRAN-IV Page 48

The following example computes

100

Sigma Ai where a is a one-dimensional array
i=1

100 DIMENSION A(100)

SUM = A (1)
DO 31 1 = 2,100
31 SUM =SUM + A(I)

END

9. The range of a DO statement may be extended to
include all statements which may logically be
executed between the DO and its terminal
statement. Thus, parts of the DO range may be
situated such that they are not physically
between the DO statement and its terminal
statement but are executed logically in the DO
range. This is called the extended range.

Example:
DIMENSION A(586), B(580)
DO 50 1T = 186, 327, 3

IF (V7 -C*C) 20,15,31

56 A(I)

B(I) + C

26 C=C - .05
GO TO 540

31 C=C+ .08125
GO TO 34

18. It is invalid to transfer control into the
range of a DO statement not itself in the range
or extended range of the same DO statement.

MICROSOFT 8088 FORTRAN-IV Page 49

7.5

11. Within the range of a DO statement, there may

be other DO statements, in which case the DO's
must be nested. That is, if the range of one
DO contains another DO, then the range of the
inner DO must be entirely included in the range
of the outer DO.

The terminal statement of the inner DO may also
be the terminal statement of the outer DO.

For example, given a two dimensional array A of
15 ‘rows and 15 columns, and a 15 element
one-dimensional array B, the following
statements compute the 15 elements of array C
to the formula:

15
Ck =Sigma AkjBm, k = 1,2,...,15
i=1

DIMENSION A(15,15), B(15), C(15)

DO 80 K =1,15
C(K) = 0.0
DO 80 J=1,15
86 C(K) = C(K) +A(K,J) * B(J)

CONTINUE STATEMENT

CONTINUE is classified as an executable statement.
However, 1its execution does nothing. The form of
the CONTINUE statement is as follows:

CONTINUE

CONTINUE 1is frequently used as the terminal
statement in a DO statement range when the
statement which would normally be the terminal
statement is one of those which are not allowed or
is only executed conditionally.

Example:
DO 5K =1,18

IF (C2) 5,6,6
6 CONTINUE

MICROSOFT 8080 FORTRAN-IV Page 590

7.7

C2 = C2 +.895
5 CONTINUE

STOP STATEMENT

A STOP statement has one of the following forms:
STOP
or
STOP c

where ¢ is any string of one to six characters.
When STOP is encountered during execution of the
object program, the characters c¢ (if present) are
displayed on the operator <control console and
execution of the program terminates.

The STOP statement, therefore, constitutes the
logical end of the program.

PAUSE STATEMENT

A PAUSE statement has one of the following forms:
PAUSE
or
PAUSE c¢

where ¢ is any string of up to six characters.

When PAUSE is encountered during execution of the
object program, the characters c (if present) are
,displayed on the operator control console and
"execution of the program ceases.

The decision to continue execution of the ©program
*is not under control of the program. If execution
is resumed through intervention of an operator
without otherwise changing the state of the

processor, the normal execution sequence, following
PAUSE, is continued.

Execution may be terminated by typing a "T" at the

operator <console. Typing any other character will
cause execution to resume.

MICROSOFT 8080 FORTRAN-IV Page 51

7.8

CALL STATEMENT

CALL statements control transfers into SUBROUTINE
subprograms and provide parameters for use by the
subprograms. The general forms and detailed.
discussion of CALL statements appear in Section 9,
FUNCTIONS AND SUBPROGRAMS.

RETURN STATEMENT

The form, use and interpretation of the RETURN
statement is described in Section 9.

END STATEMENT

The END statement must physically be the 1last

statement of any FORTRAN program. It has the
following form:

END

The END statement is an executable statement and
may have a statement label. It causes a transfer
of control to be made to the system exit routine
$EX, which returns control to the operating system.

MICROSOFT 8088 FORTRAN-IV Page 52

SECTION 8

INPUT / OUTPUT

FORTRAN provides a series of statements which define the
control and conditions of data transmission between computer
memory and external data handling or mass storage devices
such as magnetic tape, disk, 1line printer, punchea card
processors, keyboard printers, etc.

These statements are grouped as follows:
1. Formatted READ and WRITE statements which cause

formatted information to be transmitted between the
computer and I/0 devices.

2. Unformatted READ and WRITE statements which
transmit unformatted binary data in a form similar
to internal storage.

3. Auxiliary I/0 statements for positioning and
demarcation of files.

4, ENCODE and DECODE statements for transferring data
between memory locations.

5. FORMAT statements used in conjunction with
formatted record transmission to provide data
conversion and editing information between interneal
data representation and external character string

forms.
8.1 FORMATTED READ/WRITE STATEMENTS
8.1.1 FORMATTED READ STATEMENTS

A formatted READ statement 1s used to transfer
information from an input device to the computer,

Two forms of the statement are available, as
follows:

READ (u,f,ERR=L1,END=L2) k

or

READ (u,f,ERR=L1,END=L2)
where:

u - specifies a Physical and Logical Unit Number
and may be either an unsigned integer or an

MICROSOFT 8680 FORTRAN-IV ' Page 53

integer variable in the range 1 through 255.
If an Integer variable 1is wused, an Integer
value must be assigned to it prior to execution
of the READ statement.

Units 1, 3, 4, and 5 are preassigned to the
console Teletypewriter. TUnit 2 is preassigned
to the Line Printer (if one exists). Units
6-10 are preassigned to Disk Files (see
Appendix E). These units, as well as units 11
- 255, may be re-assigned Dby the user (see
Appendix B).

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used within the input transmission or it may be
an array name, in which case the formatting
information may be input to the program at the
execution time. (See 8.5.10)

Ll1- is the FORTRAN label on the statement to which
the I/0 processor will transfer control 1if an
I/0 error is encountered.

L2- is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
End-of-File is encountered.

k - is a list of variable names, separated by com-
mas, specifying the input data.

READ (u,f)k is used to input a number of items,
corresponding to the names in the list k, from the
file on 1logical wunit u, and using the FORMAT
statement f to specify the external representation
of these items (FORMAT statements, 8.5). The ERR=

and END= <clauses are optional. 1If not specified,
I/0 errors and End-of-Files cause fatal runtime
errors.

The following notes further define the function of
the READ (u,f)k statement:

l. Each time execution of the READ statement
begins, a new record from the input file is
read.

2. The number of records to be input by a single
READ statement is determined by the list, k,
and format specifications.

3. The list k specifies the number of items to be
read from the input file and the locations into
which they are to be stored.

MICROSOFT 8880 FORTRAN-IV Page 54

4.

6.

Any number of items may appear in a single list
and the items may be of different data types.

If there are more gquantities in an input record
than there are items 1in the list, only the
number of guantities equal to the number of
items in the list are transmitted. Remaining
quantities are ignored.

Exact =cspecifications for the 1list k are
described in 8.5.

ExamEleé:

l.

Assume that four data entries are punched in a
card, with three blank columns separating each,
and that the data have field widths of 3, 4, 2
and 5 characters respectively starting in
column 1 of the card. The statements

READ(5,20)K,L,M,N
20 FORMAT(I3,3X,I4,3X,I12,3X,I5)

will read the card (assuming the Logical ©Unit
Number 5 has been assigned to the card reader)
and assign the input data to the variables K,
L, M and N. The FORMAT statement could zlso be

20 FORMAT(I13,17,15,18)

See 8.5 for complete description of FORMAT
statements.

Input the quantities of an array (ARRY):
READ (6,21)ARRY

Only the name of the array needs to appear in
the 1list (see 8.4). All elements of the array
ARRY will be read and stored using the
appropriate formatting specified by the FORMAT
statement labeled 21.

READ(u,k) may be used in conjunction with a FORMAT
statement to read H-type alphanumeric data into an
existing H-type field (see Hollerith Conversions,
8.5.3).

For example, the statements

READ(I, 25)

25 FORMAT (10HABCDEFGHIJ)

MICROSOFT 86480 FORTRAN-IV Page 55

8.1.2

cause the next 10 characters of the file on' input
device I to be read and replace the characters
ABCDEFGHIJ in the FORMAT statement.

FORMATTED WRITE STATEMENTS

A formatted WRITE statement 1is used to trapsfer
information from the computer to an output device.

Two forms of the statement are available, as
followsz«

WRITE (u,f,ERR=L1,END=L2)k
or
WRITE (u,f,ERR=L1,END=L2)
where:
u - specifies a Logical Unit Number.
f - is the statement label of the FORMAT statement

describing the type of data conversion to be
used with the output transmission.

Ll1- specifies an I/0 error branch.

L2- specifies an EOF branch.

k - is a list of variable names separated by com-
mas, specifying the output data.

WRITE (u,f)k is used to output the data specified
in the list k to a file on logical unit u using the
FORMAT statement £ to specify the external
representation of the data (see FORMAT statements,
8.6). The following notes further define the
function of the WRITE statement:

l. Several records may be output with a single
WRITE statement, with the number determined by
the 1list and FORMAT specifications.

2. Successive data are output wuntil the data
specified in the list are exhausted.

3. If output is to a device which specifies fixed
length records and the data specified in the
list do not fill the record, the remainder of
the record is filled with blanks.

Example:

MICROSOFT 80808 FORTRAN-IV Page 56

WRITE(2,10)A,B,C,D

The data assigned to the variables A, B, C and D
are output to Logical Unit Number 2, formatted
according to the FORMAT statement labeled 183.

WRITE (u,f) may be used to write alphanumeric
information when the characters to be written are

specified within the FORMAT <cstatement. In this
case a variable list is nct required.

For example, to write the characters 'H CONVERSION'
on unit 1,

WRITE (1,26)

26 FORMAT (12HH CONVERSION)

8.2 UNFORMATTED READ/WRITE

Unformatted I/0 (i.e. without data conversion) is

accomplished using the statements:

READ (u, ERR=L1,END=L2) k

WRITE (u,ERR=L1,END=L2) k

where:

u - specifies a Logical Unit Number.

L1- specifies an I/O error branch.

L2- specifies an EOF branch.

k - is a list of variable names, separated by
commas, specifying the I/0 data.

The following notes define the functions of

unformatted I/0 statements.

1. Unformatted READ/WRITE statements perform
memory-image transmission of data with no data

conversion or editing.

2. The amount of data transmitted corresponds to
the number of variables in the list k.

MICROSOFT 8080 FORTRAN-IV Page 57

3. The total length of the list of variable names
in an unformatted READ must not be longer than
the record length. If the logical record
length and the length of the list are the same,
the entire record is read. If the 1length of
the 1list is shorter than the logical record
length the wunread items in the record are
skipped.

4. The WRITE(a)k statement writes one 1logical
record.

5. A logical record may extend across more than
one physical record.

8.3 AUXILIARY I/O STATEMENTS

Three auxiliary I/0 statements are provided:

BACKSPACE u
REWIND u
ENDFILE u

Initially, the actions of all three statements are

defined as no-ops. They may, however, be redefined
(see Appendices B and E).

8.4 ENCODE/DECODE

ENCODE and DECODE statements transfer data,
according to format specifications, from one
section of memory to another. DECODE changes data
from ASCII format to the specified format. ENCODE
changes data of the specified format 1into ASCII
format. The two statements are of the form:

ENCODE (A,F) K
DECODE(A,F) K

where;

A is an array name
F is FORMAT statement number
K is an I/0 List

DECODE is analogous to a READ statement, since it
causes conversion from ASCII to internal format.
ENCODE is analogous to a WRITE statement, causing
conversion from internal formats to ASCII.

MICROSOFT 8086 FORTRAN-IV Page 58

B.5

8.5.1

NOTE

Care should be taken that the arrav A is
always large enough to contain all of the
data being processed. There 1is no chneck
for overflow. An ENCODE overation which
overflows the array will vrobably wipe out
important data following the array. A
DECODE operation which overflows will
attempt to process the data following the
array.

INPUT/OUTPUT LIST SPECIFICATIONS

Most forms of READ/WRITE statements may contain an
ordered 1list of data names which identify the data
to be transmitted. The order in which the 1list
items appear must be the same as that in which the
corresponding data exists (Input), or will exist
(Output) in the external I/O medium.

Lists have the following form:
ml,m2,...,mn

where the mi are list items separated by commas, as
shown.

LIST ITEM TYPES

A list item may be a single datum identifier or a
multiple data identifier.

1. A single datum identifier item is the name of a
variable or array element. One or more of
these items may be enclosed 1in parentheses
without changing their intended meaning.

Examples:
A

C(2611) IRIKIDI (IIJ)
B,1(10,10),S,(R,K),F(1,25)

NOTE

The entry (I,J) defines two items in a
list while (26,1) is a subscriot.

MICROSOFT 8088 FORTRAN-IV Page 59

subscript(s) is considered equivalent to the
listing of each successive element of the
array.

Example:

If B is a two dimensional array, the list item
‘B is equivalent to: 2(1,1),B(2,1),B(3,1)....,
B(1,2),B(2,2)...,B(j,k).

where j and k are the cubscript limits of BE.
b. DO-implied items are lists of one or more
single datum identifiers or other DO-implied
items followed by a comma character .and an
expression of the form:

i =ml,m2,m3 or i = ml,m2
and enclosed in parentheses.
The elements i,ml,m2,m3 have the same meaning
as defined for the DO statement. The DO

implication applies to all list items enclosed
in parentheses with the implication.

Examples:

DO-Implied Lists Equivalent Lists
(X(1),I1=1,4) X(1),X(2),X(3),X(4)
(Q(J),R(J),J=1,2) Q(1),R(1),0Q(2),R(2)
(G (K) ,K=1,7,3) G(l),G(4).G(7)

((a(1,J9),1=3,5),3=1,9,4) A(3,1),A(4,1),A(5,1)
A(3,5),A(4,5),A(5,5)
A(3,9),A(4,9),A(5,9)

(R(M) ,M=1,2),I,2AP(3) R(1),R(2),I,2AP(3)
(R(3),T(1),I=1,3) R(3),T(1),R(3),T(2),
R(3),T(3)

Thus, the elements of a matrix, for example,
may be transmitted in an order different from
the order in which they appear in storage. The
array A(3,3) occupies storage in the order
A(1l,1),a(2,1), A(3,1),A(1,2),A(2,2),A(3,2),
A(l,3),A(2,3),A(3,3). By specifying the
transmission of the array with the DO-implied
list item ((a(1,J9),3=1,3),I=1,3), the order of
transmission is:
A(l,1),A(1,2),A(1,3),A(2,1),A(2,2),
A(2,3),a(3.1),A(3,2),A(3,3)

MICROSOFT 8080 FORTRAN-IV A Page 60

8.5.2 SPECIAL NOTES ON LIST SPECIFICATIONS

1. The ordering of a list is from 1left to right
with repetition of items enclosed in
parentheses (other than as subscripts) when
accompanied by controlling DO-implied index
parameters.

2. Arrays are transmitted by the appearance of the
array name (unsubscripted) in an input/output
list.

3. Constants may appear in an input/output 1list
only as subscripts or as indexing parameters.

4. For input lists, the DO-implying elements i,
ml, m2 and m3 may not appear within the
parentheses as list items.

Examples:

1. READ (1,20) (1,J3,A(I),I=1,J,2) is not allowed

2. READ(1,20)I,J,(A(I),I=1,J3,2) is allowed

3. WRITE(1l,20)(1,J,A(I),I=1,J,2) 1is allowed

Consider the following examples:

DIMENSION A (25)

a(l) = 2.1
A(3) = 2.2
A(5) = 2.3
J =5

WRITE (1,26) J,(1I,A(1),I=1,J,2)

the output of this WRITE statement is

5,1,2.1,3,2.2,5,2.3

Any number of items may appear in a single
list.

In a formatted transmission (READ(u,f) k,
WRITE(u,f)k} each item must have the correct
type as specified by a FORMAT statement.

MICROSOFT 8088 FORTRAN-IV Page 61

8.6

8.6.1

FORMAT STATEMENTS

FORMAT statements are non-executable, generative
statements wused in conjunction with formatted READ
and WRITE statements. They specify conversion
methods and data editing information as the data is
transmitted between computer storage and external
media representation.

FORMAT statements require statement labels for
reference (f) in the READ(u,f)k or WRITE(u,f)k
statements.

The general form of a FORMAT statement is as
follows:

n FORMAT (sl,s2,...,sn/sl',s2',...,sn'/...)

where n is the statement label and each si 1is a
field descriptor. The word FORMAT and the
parentheses must be present as shown. The slash
(/) and comma (,) characters are field separators
and are described in a separate subparagraph. The
field is defined as that part of an external record
occupied by one transmitted item.

FIELD DESCRIPTORS

Field descriptors describe the sizes of data fields
and specify the type of conversion to be exercised
upon each transmitted datum. The FORMAT field
descriptors may have any of the following forms:

Descriptor Classification

rFw.d

rGw.d

rEw.d Numeric Conversion
rDw.d

riw

rLw Logical Conversion
rAw

nHhlh2...hn Hollerith Conversion
'1112...1n"

nX Spacing Specification
mpP Scaling Factor

where:

MICROSOFT 8080 FORTRAN-IV Page 62

8.6.2

1. w and n are positive integer constants defining
the field width (including digits, decimal
points, algebraic signs) in the external data
representation.

2. d 1is an integer specifying the number of
fractional digits appearing in the external
data representation.

3. The characters F, G, E, D, I, A and L indicate
the type of conversion to be applied to the
items in an input/output list.

4. r is an optional, non-zero integer indicating
that the descriptor will be repeated r times.

5. The hi and 1i are characters from the FORTRAN
character set.

6. m is an integer constant (positive, negative,
or zero) indicating scaling.

NUMERIC CONVERSIONS

Input operations with any of the rumeric
conversions will allow the data to be represented
in a "Free Format"; 1i.e., commas may be used to
separate the fields in the external representation.

F-type conversion

Form: Fw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.

F-output

Values are converted and output as minus sign (if
negative), followed by the integer portion of the
number, a decimal point and d digits of the
fractional portion of the number. If a value does
not fill the field, it is right justified 1in the
field and enough preceding blanks to fill the field
are inserted. If a value reguires more field
positions than allowed by w, the first w-1 digits
of the value are output, preceded by an asterisk.

MICROSOFT 8088 FORTRAN-IV Page 63

F-Output Examples:

FORMAT Internal Output

Descriptor Value (b=blank)

F10.4 368.42 bb362.4200

F7.1 -4786.361 -4786.4

F8.4 8.7E-2 bb@#.8375

F6.4 4739.76 * 7600

F7.3 -5.6 b-5.600

* Note the loss of leading digits in the 4th 1line
above.

F-Input

(See the description under E-Input below.)

E-type Conversion

Form: Ew.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.

E-Output

Values are converted, rounded to d digits, and
output as:

1. a minus sign {(if negative),

2. a zero and a decimal point,

3. d decimal digits,

4. the letter E,

5. the sign of the exponent (minus or blank),

6. two exponent digits,

in that order. The values as described are right
justified 1in the field w with preceding blanks to
fill the field if necessary. The field width w
should satisfy the relationship:

w>d+ 7

Otherwise significant characters may be lost. Some
E-Output examples follow:

FORMAT Internal Output
Descriptor Value (b=blank)

MICROSOFT 8088 FORTRAN-IV

Page 64

E12.5 76.573 bd.76573EbG2
E14.7 -32672.354 -0.3267235Eb#5
E7.3 56.93 * §.569E

E13.4 -0.00812321 bb-0.1232E-02
E8.2 76321.73 9.76ELDS
E-Input

Data values which are to be processed under E, F,
or G conversion can be a relatively loose format in
the extérnal input medium. The format is identical
for either conversion and is as follows:

1. Leading spaces {(ignored)

2. A + or - sign (an unsigned input is assumed to
be positive)

3. A string of digits

4., A decimal point

5. A second string of digits
6. The character E

7. A + or - sign

8. A decimal exponent

fach item in the list above is optional; but the
following conditions must be observed:

1. If FORMAT items 3 and 5
then 4 is required.

{above)} are present,

2. If FORMAT item 8 is present, then 6 or 7 or
both are required.

3. All non-leading spaces are considered zeros.

Input data can be any number of digits in length,

and correct magnitudes will be developed, but
precision will be maintained only to the extent
specified in Section 3 for Real data.

E- and F- and G- Input Examples:

FORMAT Input Internal
Descriptor (b=blank) Value
E10.3 +3.23756+4 +2375.60
E19.3 bbbbbl 7631 +17.631
G8.3 b1623911 +1628.911

MICROSOFT 8680 FCRTRAN-IV Page 65

F12.4 bbbb-6321132 -632.1131

Note in the above examples that if no decimal point
is given among the input characters, the d in the
FORMAT specification establishes the decimal point
in conjunction with an exponent, if given. 1If a
decimal point is included in the input characters,

-

the d specification is ignorea.
The letters E, F, and G are interchangeable in the

input format specifications. Tne end result is the
same.

D-Type Conversions

D-Input and D-Output are identical to E-Input and
E-Output except the exponent may be specified with
a “D" instead of an "E."

G-Type Conversions

Form: Gw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered significant.

G-Input:

(See the description under E-Input)

G-Output:

The method of output conversion is a function of
the magnitude of the number being output. Let n be

the magnitude of the number. The following table
shows how the number will be output:

Magnitude Equivalent éonversion
.1<= n <1 F(w-4).d,4X
l] <= n < 18 F(w-4).(d-1) ,4X

d-2 a-1

10 <= n < 10 F(w-4).1,4X
d-1 d

MICROSOFT 8088 FORTRAN-IV Page 66

8.6.3

19 <= n < 19 F(w-4).0,4X

Otherwise Ew.d

J-Conversions

Form: Iw

Only Integer data may be converted by this form of
conversion. w specifies field width.

I-Output:

Values are conver ted to Integer constants.
Negative values are preceded by a minus sign. 1If
the value does not fill the field, it 1is right
justified in the field and enough preceding blanks
to fill the field are inserted. If the value
exceeds the field width, only the least significant
w-1 characters are output preceded by an asterisk.

Examples:

FORMAT Internal Output
Descriptor Value (b=blank)
I6 +281 bbb281
I6 -23261 -23261
I3 126 126
I4 -226 -226
I3 1234 *34

I-Input:

A field of w characters is input and converted to
internal integer format. A minus sign may precede
the integer digits. 1If a sign is not present, the
value is considered positive.

Integer values in the range -32768 to 32767 are
accepted. Non-leading spaces are treated as Zeros.

Examples:

Format Input Internal
Descriptor (b=blank) Value

I4 bl24 124

I4 -124 -124

I7 bb6732b 67320

I4 1b2b 1920

HOLLERITH CONVERSIONS

MICROSOFT 8088 FORTRAN-IV Page 67

A-Type Conversion

The form of the A conversion is as follows:
Aw

This descriptor causes unmodified Hollerith
characters to be read into or written from a
specified list item.

The maximum number of actual characters which may
be transmittead between internal and external
representations using Aw is four times the number
of storage units in the corresponding list item
(i.e., 1 character for logical items, 2 characters
for 1Integer items, 4 characters for Real items and
8 characters for Double Precision items).

A-Output:

If w is greater than 4n (where n is the number of
storage units required by the 1list item), the
external output field will consist of w-4n blanks
followed by the 4n characters from the internal
representation. If w is less than 4n, the external
output field will consist of the 1leftmost w
characters from the internal representation.

Examples:

Format Interral Type Output
Descriptor (b=blanks)

Al Al , Integer A

A2 AB Integer AB

A3 ABCD Real ABC

A4 ABCD Real ABCD

A7 ABCD Real bbbABCD
A-Input:

If w is greater than 4n (where n is the number of
storage units required by the corresponding list
item), the rightmost 4n characters are taken from
the external input field. 1If w is less than 4n,
the w characters appear left Jjustified with w-4n
trailing blanks in the internal representation.

ExamEles:

Forma? Input Type Internal
Descriptor Characters (b=blanks)
Al A Integer Ab

A3 ABC Integer AB

MICROSOFT 8888 FORTRAN-IV Page 68

a4 ABCD Integer AB
Al A Real Abbb
A7 ABCDEFG Real DEFG

H-Conversion

The forms of H convercsion are as follows:
nHhlh2...hn
‘*hlh2...hn'

These descriptors process Hollerith character
strings between the descriptor and the external
field, where each h represents any character from
the ASCII character set.

NOTE

Special consideration 1is required 1if an
apostrophe (') 1is to be used within the
literal string in the second form. An
apostrophe character within the string is
represented by two successive apostrophes.
See the examples below.

H-Output:

The n characters hi, are placed in the external
field. In the n#Hhlh2...hn form the number of
characters in the string must be exactly as
specified by n. Otherwise, characters from other
descriptors will be taken as part of the string.
In both forms, blanks are counted as characters.

Examgles:

Format Output

Descriptor (b=blanks)
1HA or 'A' A
8HbSTRINGD or 'bSTRINGDL' bSTRINGD
118X (2,3)=12.0 or 'X(2,3)=12.0" X(2,3)=12.0
12HIbSHOULDN'T or 'IbSHOULDN''T' IbSHOULDN'T
H-Input

The n characters of the string hi are replaced by
the next n characters from the input record. Thic

resul;s in a new string of characters in the field
descriptor.

MICROSOFT 8830 FORTRAN-IV Page 69

FORMAT Input Resulgant

Descriptor (b=blank) Descriptor
4H1234 or '1234° 'ABCD 4HABCD or 'ABCD' y
7BbbFALSE or 'bbFALSE' bFALSED 7HbFALSEb or ‘bFALS?;
6Hbbbbbb or 'bbbbbb' MATRIX 6HMATRIX or ‘MATRIX

8.6.4 LOGICAL CONVERSIONS

The form of the logical conversion is as follows:
Lw
L-Output:

If the value of an item in an output list
corresponding to this descriptor is @, an F will be

output; otherwise, a T will be output. If w 1is
greater than 1, w-1 leading blanks precede the
letters.

Examples:

FORMAT Internal " Output
Descriptor Value (b=blank)

Ll =@ F

L1 >0 T

L5 <>0 bbbbT

L7 =0 bbbbbbF
L-Input

The external representation occupies w positions.
It consists of optional blanks followed by a "T" or
“F", followed by optional characters.

8.6.5 X DESCRIPTOR

The form of X conversion is as follows:
nX

This descriptor causes no conversion to occur, nor
does it <correspond to an item in an input/output
list. When used for output, it causes n blanks to
be inserted in the output record. Under input
circumstances, this descriptor causes the next n
characters of the input record to be skipped.

Output Examples:

FORMAT Statement Output

MICROSOFT 8080 FORTRAN-IV Page 70
(b=blanks)
3 FORMAT (1HA,4X,2HBC) AbbbbBC
7 FORMAT (3X,4HABCD, 1X) bbbABCDDb
Input Examples:
FORMAT Statement Input String Resultant Input

19 FORMAT (F4.1,3X,F3.0) 12.5ABC120 12.5,120
5 FORMAT (7X,I3) 1234567012 012

8.6.6 P DESCRIPTOR

The P descriptor 1is used to specify a scaling
factor for real conversions (F, E, D, G). The form
is nP where n is an integer constant (positive,
negative, or zero).

The scaling factor is automatically set to zero at
the beginning of each formatted I/0 call (each READ
or WRITE statement). If a P descriptor is
encountered while scanning a FORMAT, the scale
factor is changed to n. The scale factor remains
changed until another P descriptor is encountered
or the 1/0 terminates.

Effects of Scale Factor on Input:

During E, F, or G input the scale factor takes
effect only if no exponent 1is present 1in the
external representation. In that case, the
internal value will be a factor of 18**n less than
the external value (the number will be divided by
18**n before being stored).

Effect of Scale Factor on Qutput:

E-Output, D-Output:

The coefficient is shifted left n places relative
to the decimal point, and the exponent is reduced
by n (the value remains the same).

F-Output:

The external value will be 10**n times the internal
value.

G-Output:

The scale factor is ignored if the internal value
is small enough to be output using F conversion.
Otherwise, the effect is the same as for E output.

MICROSOFT 808d FORTRAN-IV Page 71

8.6.7 SPECIAL CONTROL FEATURES OF FORMAT STATEMENTS

8.6.7.1 Repeat Specifications

1.

The E, F, D, G, I, L and A £field descriptors
may be indicated as repetitive descriptors by
using a repeat count r in the form rEw.d,
rFw.d, rGw.d, rIw, rLw, rAw. The following
pairs of FORMAT statements are eqguivalent:

66 FORMAT (3F8.3,F9.2)
C IS EQUIVALENT TO:
66 FORMAT (F8.3,F8.3,F8.3,F9.2)

14 FORMAT (213,2A5,2E10.5)
C IS EQUIVALENT TO:
14 FORMAT (I13,13,A5,A5,E10.5,E10.5)

Repetition of a group of field descriptors is
accomplished by enclosing the group in
parentheses preceded by a repeat count.
Absence of a repeat count indicates a count of
one, Up to two levels of parentheses,
including the parentheses required by the
FORMAT statement, are permitted.

Note the following equivalent statements:

22 FORMAT (I3,4(F6.1,2X))
C IS EQUIVALENT TO: .
22 FORMAT (I3,F6.1,2X,F6.1,2X,F6.1,2X,
1 F6.1,2X)

Repetition of FORMAT descriptors is also
initiated when all descriptors in the FORMAT
statement have been used but there are still
items in the input/output list that have not
been processed. When this occurs the FORMAT
descriptors are re-used starting at the opening
parenthesis that matches the 1last closing
parenthesis in the FORMAT statement. The
parentheses enclosing the entire list of
descriptors are not considered unless there are
no other parentheses in the 1list. A repeat
count preceding the parenthesized descriptor(s)
to be re-used is also active in the re-use.
This type of repetitive use of FORMAT
descriptors terminates processing of the
current record and initiates the processing of
a new record each time the re-use begins.
Record demarcation under these circumstances is

MICROSOFT 8080 FORTRAN-IV Page 72

8.6.7.2

the same as in the paragraph 8.7.6.2 below.

Input Example:
DIMENSION A(104)
READ (3,13) A

13 FORMAT (5F7.3)

In this éxample, the first 5 quantities from each
of 208 records are input and assigned to the array
elements of the array A.

Output Example:

WRITE (6,12)E,F,K,L,M,KK,LL,MM,K3,LE,
1 M3

12 FORMAT (2F9.4,(317))

In this example, three records are wr-itten. Record
1 contains E, F, K, L and M. Because the
descriptor 3I7 is reused twice, Record 2 contains
KK, LL and MM and Record 3 contains K3, L3 and M3.

Field Separators

Two adjacent descriptors must be separated in the
FORMAT statement by either a comma or one or more
slashes.

Example:
2HPK/F6.3 or 2HPK,F6.3

The slash not only separates field descriptors, but
it also specifies the demarcation of formatted
records.

Each slash terminates a record and sets up the next
record for processing. The remainder of an input
record is ignored; the remainder of an output
record 1is filled with blanks. Successive slashes
(///.../) cause successive records to be ignored on
input and successive blank records to be written on
output.

MICROSOFT 8080 FORTRAN-IV Page 73

Output example:
DIMENSION A(1886),J(20)

WRITE (7,8) J,A
8 FORMAT (1017/1017/50F7.3/508F7.3)

In this example, the data specified by the list of
the WRITE statement are output to unit 7 according
to the specifications of FORMAT statement 8. Four

records are written as follows:

Record 1 Record 2 Record 3 Record 4
J (1) J(11) A(l) A(51)
J(2) J(12) A(2) A(52)
J(10) J(20) A(50) A(160)

Input Example:

DIMENSION B(10)

READ (4,17) B
17 FORMAT(F10.2/F10.2///8F18.2)

In this example, the two array elements B(l) and
B(2) receive their values from the first data
fields of successive records (the remainders of the
two records are ignored). The third and fourth
records are ignored and the remaining elements of
the array are filled from the fifth record.

8.6.8 FORMAT CONTROL, LIST SPECIFICATIONS AND RECORD
DEMARCATION
The following relationships and interactions

between FORMAT control, input/output 1lists and
record demarcation should be noted:

1. Execution of a formatted READ or WRITE
statement initiates FORMAT control.

2. The conversion performed on data depends on
information jointly provided by the elements in
the input/output list and field descriptors in
the FORMAT statement.

MICROSOFT 8088 FORTRAN-IV ‘ Page 74

3.

If there is an input/output list, at least one
descriptor of types E, F, D, G, I, L or A must
be present in the FORMAT statement.

Each execution of a formatted READ statement
causes a new record to be input.

Each item in an input 1list corresponds to a
string of <characters in the record and to a
descriptor of the types E, F, G, I, L or A in
the FORMAT statement.

H and X descriptors communicate information
directly between the external record and the
field descriptors without reference to 1list
items.

On input, whenever a slash 1is encountered in
the FORMAT statement or the FORMAT descriptors
have been exhausted and re-use of descriptors
is initiated, processing of the current record
is terminated and the following occurs:

a. Any unprocessed characters in the record
are ignored.

b. 1If more input is necessary to satisfy
list requirements, the next record is
read.

A READ statement is terminated when all items
in the input list have been satisfied if:

a. The next FORMAT descriptor is E, F, G, I,
L or A.

b. The FORMAT control has reached the last
outer right parenthesis of the FORMAT
statement.

If the input list has been satisfied, but the
next FORMAT descriptor is H or X, more data are
processed (with the possibility of new records
being input) until one of the above conditions
exists.

If FORMAT control reaches the 1last right
pParenthesis of the FORMAT Statement but there
are more list items to be processed, all
part of the descriptors are reused
3 in the description of Repeat -
sub-paragraph 8.7.6.1) ‘

or
~ (See item
Specifications,

MICROSOFT 808J FORTRAN-IV Page 75

8.6.10

10. When a Formatted WRITE statement is executed,
records are written each time a slash is
encountered in the FORMAT statement or FORMAT
control has reached the rightmost right
parenthesis. The FORMAT control terminates in
one of the two methods described for READ
termination in 8 above. Incomplete records are
filled with blanks to maintain record lengths.

FORMAT CARRIAGE CONTROL

The first character of every formatted output

record is used to convey carriage control
information to the output device, and is therefore
never printed. The carriage control character

determines what action will be taken before the
line is printed. The options are as follows:

Control Character Action Taken Before Printing

] Skip 2 lines

1 Insert Form Feed
+ No advance

Other Skip 1 line

FORMAT SPECIFICATIONS IN ARRAYS

The FORMAT reference, £, of a formatted READ or
WRITE statement (See 8.1) may be an array name
instead of a statement label. If such reference is
made, at the time of execution c¢f the READ/WRITE
statement the first part of the information
contained in the array, taken in natural order,
must constitute a valid FORMAT specification. The
array may contain non-FORMAT information following
the right parenthesis that ends the FORMAT
specification.

The FORMAT specification which is to be inserted in
the array has the same form as defined for a FORMAT
statement (i.e., it begins with a left parenthesis
and ends with a right parenthesis).

The FORMAT specification may be inserted 1in the
array by use of a DATA initialization statement, or
by use of a READ statement together with an Aw

FORMAT. Example:

Assume the FORMAT specification

(3F10.3,416)

or a similar 12 character specification 1is to be

MICROSOFT 80880 FORTRAN-IV Page 76

stored 1into an array. The array must allow a
minimum of 3 storage units.

The FORTRAN coding below shows the various methods
of establishing the FORMAT specification and then

" referencing the array for a formatted READ or
WRITE.

C DECLARE A REAL ARRAY
DIMENSION A(3), B(3), M(4)

C INITIALIZE FORMAT WITH DATA STATEMENT
DATA A/'(3F1','9.3,','416)"'/

C READ DATA USING FORMAT SPECIFICATIONS
C IN ARRAY A
READ(6,A) B, M

C DECLARE AN INTEGER ARRAY
DIMENSION IA(4), B(3), M(4)

C READ FORMAT SPECIFICATIONS
READ (7,15) 1A
C FORMAT FOR INPUT OF FORMAT SPECIFICATIONS
15 FORMAT (4A2)

C READ DATA USING PREVIOUSLY INPUT
C FORMAT SPECIFICATION
READ (7,IA) B,M

MICROSOFT 8689 FORTRAN-IV Page 77

SECTION 9

FUNCTIONS AND SUBPROGRAMS

The FORTRAN language provides a means for defining and using
often needed programming orocedures such that the statement
or statements of the procedures need appear 1in a procgram
only once but may be referenced and brought into the locgical
execution sequence of the program whenever and as often as
needed. ‘

These procedures are as follows:

1. Statement functions.
2. Library functions.
3. PFUNCTION subprograms.

4. SUBROUTINE subprograms.

Each of these procedures has its own unigue requirements for
reference and defining purposes. These reguirements are
discussed in subsequent paragraphs of this section,.
However, certain features are common to the whole group or
to two or more of the procedures. These common features are
as follows:

1. Each of these procedures is referenced by its name
which, in all cases, 1is one to six alphanumeric
characters of which the first is a letter.

2. The first three are designated as "functions" and
are alike in that:

l. They are always single valued (i.e., they
return one value to the program unit from which
they are referenced).

2. They are referred to by an expression
containing a function name.

3. They must be typed by type specification
statements if the data type of the
single-valued result is to be different from
that indicated by the pre-defined convention.

3. FUNC?ION subprograms and SUBROUTINE subprograms are
considered program units.

MICROSOFT 8089 FORTRAN-IV Page 78

In the following descriptions of these procedures, the term
calling prcgram means the program unit or procedure in which
a reference to a procedure is made, and the term “called
program" means the procedure to which a reference is wmade.

9.1

THE PROGRAM STATEMENT

The PROGRAM statement provides a means of
specifying a name for a main program unit. The
form of the statement is:

PROGRAM name

If present, the PROGRAM statement must appear
before any other statement in the program unit.
The name consists of 1-8 alphanumeric characters,
the first of which 1is a letter. If no PROGRAM
statement 1is ©present in a main ©Dprogram, the
compiler assigns a name of $MAIN to that program.

STATEMENT FUNCTIONS

Statement functions are defined by a single
arithmetic or logical assignment statement and are
relevant only to the program unit in which they
appear. The general form of a statement function
is as follows:

f(al,a2,...an) = e

where f is the function name, the ai are dummy
arguments and e 1is an arithmetic or logical
expression.

Rules for ordering, structure and use of statement
functions are as follows:

1. Statement function definitions, if they exist
in a program unit, must precede all executable
statements 1in the unit and follow all
specification statements.

2. The ai are distinct wvariable names or array
elements, but, being dummy variables, they may
have the csame names as variables of the same
type appearing elsewhere in the program unit.

3. The expression e is constructed according to
the rules in SECTION 4 and mav contain only.
references to the dummy arguments and
nen-Literal censtants, variable and array
element references, utility and mathematical
function references and references to

MICROSOFT 8088 FORTRAN-IV Page 79

previously defined statement functions.

4. The type of any statement function name or
argument that differs from its pre-defined
convention type must be defined by a type
specification statement.

5. The relationship between f and e must conform
to the replacement rules in Section 5.

6. A statement function 1is called by its name
followed by a parenthesized list of arguments.
The expression is evaluated using the arguments
specified in the call, and the reference is
replaced by the result.

7. The ith parameter in avery argument 1list must

agree in type with the ith dummy in the
statement function.’ '

The example below shows a statement function and a

statement function call.

C STATEMENT FUNCTION DEFINITION

C .
FUNC1(A,B,C,D) = ((A+B)**C)/D

C STATEMENT FUNCTION CALL

Al2=A1-FUNC1(X,Y,27,C7)

LIBRARY FUNCTIONS

Library functions are a group of utility and
mathematical functions which are "built-in" to the
FORTRAN system. Their names a pre-defined to the
Processor and automatically typed. The functions
are listed in Tables 9-1 and 9-2. 1In the tables,
arguments are denoted as al,a2,...,an, if more than
one argument is required; or as a if only one is
required.

A library function is called when its name is used
in an arithmetic expression. Such a reference
takes the following form:

f(al,a2,...an)

where f is the name of the function and the ai are
actual arguments. The arguments must agree in

type, number and order with the specifications
indicated in Tables 9-1 and 9-2.

MICROSOFT 86823 FORTRAN-IV Page 80

In addition to the functions listed in $-1 and 9-2,
four additional library subprograms are provided to
enable direct access to the 8089 (or Z83) hardaware.
These are:

PEEK, POKE, INP, OUT

PEEK and INP are Logical functions; POKE and OUT
are subroutines. PEEK and POKE allow direct access
to any memory location. PEEK(a) returns the
contents of the memory 1location specified by a.
CALL FOKE(al,a2) causes the contents of the memory
location specified by al to be replaced by the
contents of a2. INP and OUT allow direct access to
the 1I/0 ports. INP(a) does an input from port a
and returns the 8-bit value input. CALL OUT(al,a2)
outputs the value of a2 to the port specified by
al.

Examples:

Al = B+FLOAT (I7)

MAGNI ABS (KBAR)
PDIF = DIM(C,D)
S3 = SIN(T12)

ROOT = (-B+SQRT(B**2-4,*A*C))/
1 (2.*A)

MICROSOFT 8880 FORTRAN-IV Page 81

TABLE 9-1

Intrinsic Functions

Function Name Definition Types
Argument Function
ABS lal Real Real
IABS Integer Integer
DABS Double Double
AINT Sign of a times lar- Real Real
INT gest integer <=]a] Real Integer
IDINT Double Integer
AMOD al (mod a2) Real Real
MOD Integer Integer
AMAX0 Max(al,a2,...) Integer Real
AMAX1 Real Real
MAX0O Integer Integer
MAX1 Real Integer
DMAX1 Double Double
AMING Min(al,a2,...) Integer Real
AMIN1 Real Real
MINO Integer Integer
MIN1 Real Integer
DMIN1 Double Double
FLOAT Conversion from Integer Real
Integer to Real
IFIX Conversion from Real Integer
Real to Integer

SIGN Sign of a2 times |al| Real Real
ISIGN Integer Integer
DSIGN Double Double
DIM al - Min(al,a2) Real Real
IDIM Integer Integer
SNGL Double Real
DBLE Real Double

MICROSOFT 8088 FORTRAN-IV

Name

EXP
DEXP

ALOG
DLOG

ALOG1#9
DLOG1#8

SIN
DSIN

COS
DCOS

TANH

SQRT
DSQRT

ATAN
DATAN

ATAN?Z2
DATAN?Z

DMOD

Number
of
Arguments

e

NN

Page 82

TABLE 9-2

Basic External Functions

Definition

In (a)

logl®B (a)

sin (a)

cos (a)

tanh (a)

(a) ** 1/2

arctan (a)

arctan (al/a2)

al (mod a2)

Type
Argument Function
Real Real
Double Double
Real Real
Double Double
Real Real
Double Double
Real Real
Double Double
Real Real
Double Double
Real Real
Real Real
Double Double
Real Real
Double Double
Real Real
Double Double
Double Double

MICROSOFT 8080 FORTRAN-IV Page 83

9.4

FUNCTION SUBPROGRAMS

A program unit which begins with a FUNCTION
statement is called a FUNCTION subprogram.

A FUNCTION statement has one of the following
forms:

t FUNCTION f(al,a2,...an)

or

FUNCTION f(al,a2,...an)

where:

l. t is either INTEGER, REAL, DOUBLE PRECISION or
LOGICAL or 1is empty as shown in the second
form.

2, f is the name of the FUNCTION subprogram.

3. The ai are dummy arguments of which there must
be at 1least one and which represent variable

names, array names or dummy names of SUBROUTINE
or other FUNCTION subprograms.

CONSTRUCTION OF FUNCTION SUBPROGRAMS

Construction of FUNCTION subprograms must comply
with the following restrictions:

1. The FUNCTION statement must be the first
statement of the program unit.

2, Within the FUNCTION subprogram, the FUNCTION
name must appear at least once on the left side
of the equality sign of an assignment statement
or as an item in the input list of an input
statement. This defines the value of the
FUNCTION so that it may be returned to the
calling program.

Additional values may be returned to the
calling program through assignment of values to
dummy arguments.

Example:
FUNCTION 27 (A,B,C)

)
27 = 5.%(A-B) + SQRT(C)

MICRCSOFT 8083 FORTRAN-IV Page 84

C REDEFINE ARGUMENT
B=B+Z7

RETURN

END

The names in the dummy argument list may not appear
in EQUIVALENCE, COMMON or DATA statements in the
FUNCTION subprogram.

If a dummy argument is an array name, then an array
declarator must appear in the subprogram with
dimensioning information consistant with that in
the calling program.

A FUNCTION subprogram may contain any defined
FORTRAN Statements other than BLOCK DATA
statements, SUBROUTINE statements, another FUNCTION
statement or any statement which references either
the FUNCTION being defined or another subprogram
that references the FUNCTION being defined.

The logical termination of a FUNCTION subprogram is
@ RETURN statement and there must be at least one
of them.

A FUNCTION subprogram must physically terminate
with an END statement.

Example:

FUNCTION SUM (BARY,I,J)
DIMENSION BARY(10,20)
SUM = 9.0
DO 8 K=1,1
Dog M =1,J

8 SUM = SUM + BARY (K,M)
RETIIRN
END

REFERENCING A FUNCTION SUBFPROGRAM

FUNCTION subprograms are called whenever the
FUNCTION name, accompanied by an argument list, is

/

MICROSOFT 8080 FORTRAN-IV Page 85

~J

used as an operand in an expression. Such
references take the following form:

f(al,a2,...,an)

where £ is a FUNCTION name and the ai are actual
arguments. Parentheses must be present in the form
shown.

The arguments ai must agree 1in type, order and
number with the dummy arguments in the FUNCTION
statement of the called FUNCTION subprogram. They
may be any of the following:

l. A variable name.

2. An array element name.

3. An arfay name.

4. An expression.

5. A SUBROUTINE or FUNCTION subprogram name,
6. A Holierith or Literal constant.

If an ai is a subprogram name, that name must have
previously been distinguished from ordinary
variables by appearing in an EXTERNAL statement and
the corresponding dummy arguments in the called
FUNCTION subprograms must be used in subprogram
references.

If ai is a Hollerith or Literal constant, the
corresponding dummy variable should encompass
enough storage units to correspond exactly to the
amount of storage needed by the constant.

When a FUNCTION subprogram 1is called, program
control goes to the first executable statement
following the FUNCTION statement.

The following examples show references to FUNCTION
subprograms.

210 = FT1+Z27(D,T3,RHO)

DIMENSION DAT(5,5)

S1 = TOT1 + SUM(DAT,S,5)

SUBROUTINE SUBPROGRAMS

MICROSOFT 8080 FORTRAN-IV Page 86

9.8

A program unit which begins with a SUBROUTINE
statement 1s called a SUBROUTINE subprogram. The
SUBROUTINE statement has one of the following
forms: '

SUBROUTINE s (al,a2,...,an)

or

SUBROUTINE s

where s is the name of the SUBROUTINE subprogram
and each ai is a dummy argument which represents a

variable or array name or another SUBROUTINE or
FUNCTION name.

CONSTRUCTION OF SUBROUTINE SUBPROGRAMS

The SUBROUTINE statement must be the first statement
of the subprogram.

The SUBROUTINE subprogram name must not appear in
any statement other ‘'than the 1initial SUBROUTINE
Statement.

The dummy argument names must not appear in
EQUIVALENCE, COMMON or DATA statements in the
subprogram.

If a dummy argument is an array name then an array

- declarator must appear in the subprogram with

dimensioning information consistant with that in the
calling program.

If any of the dummy argquments represent values that
are to be determined by the SUBROUTIWE subprogram
and returned to the «calling program, these dummy
arguments must appear within the subprogram on the
left side of the equality sign 1in a replacement
statement, 1in the input list of an input statement
Oor as a parameter within a subprogram reference.

A SUBROUTINE may contain any FORTRAN statements
other than BLOCK DATA statements, FUNCTION
statements, another SUBROUTINE statement, a PROGRAM
statement or any statement which references the
SUBROUTINE subprogram being defined or another

subprogram which references the SUBROUTINE
subprogram being defined.

A SUBROUTINE subprogram may contain any number of
RETURN statements. It must have at least one.

J

MICROSOFT 80380 FORTRAN-IV » Paqge 87

8.

9.

10.

The RETURN statement(s) is the 1logical tdrmination
point of the subprogram.

The physical termination of a SUBROUTINE subprogram
is an END statement.

If an actual arqument transmitted to a SURROUTINN
suborogram by the calling program iz the name of a
SUBROUTINE or FUNCTION subprogram, the corresvonding
dummy argument must be used in the calied SUBROUTINE
subprogram as a subprogram reference.

Example:
C SUBROUTINE TO COUNT POSITIVE ELEMENTS
C IN AN ARRAY

SUBROUTINE COUNT P (ARRY,I,CNT)
DIMENSION ARRY (7)
CNT =90
DO 9 J=1,1
IF(ARRY (J))9,5,5
9 CONTINUE
RETURN
5 CNT = CNT+].0
GO TO 9
END

REFERENCING A SUBROUTINE SUBPROGRAM

A SUBROUTINE subprogram may be called by using a
CALL statcment. A CALL statement has one of the
following forms:

CALL s(al,a2,...,an)
or
CALL s

where s is a SUBROUTINFE subprogram name and the ai
are the actual arquments to be used by the
subprogram. The ai must aqgrec in type, orvder and
number with the corresponding dummy argument:s in
the subprogram-defining SUBROUTINE statlement .

The arguments in a CALI, statement must comply with
the following rules:

I. FUNCTION and SUBROUTINE names appearing in the
argument list must have previously appeared in
an EXTERNATL statemont .

MICROSOFT 3883 FORTRAN-IV Page 88

9.10

2. If the called SUBROUTINE subprogram contains a
variable array declarator, then the CALL
statement must contain the actual name of the
array and the actual dimension specifications
as arguments,

3. If an item in the SUBROUTINE subvprogram dummy
argument 1list 1is an array, the corresponding
item in the CALL statement argument 1list must
be an array.

When a SUBROUTINE subprogram is called, program
control goes to the first executable statement
following the SUBROUTINE statement.

Example:
DIMENSION DATA(10)

C THE STATEMENT BELOW CALLS THE
C SUBROUTINE IN THE PREVIOUS PARAGRAPH
C

CALL COUNTP (DATA,18,CPOS)

RETUGRN FROM FUNCTION AND SUBROUTINE SUBPROGRAMS

The logical termination of a FUNCTION or SUBROUTINE
subprogram is a RETURN statement which transfers
control back to the calling program. The general
form of the RETURN statement is simply the word

RETURN

The following rules govern the use of the RETURN
statement:

1. There must be at least one RETURN statement 1in
each SUBROUTINE or FUNCTION subprogram.

2, RETURN from a FUNCTION subprogram is to the
instruction sequence of the <calling program
following the FUNCTION reference.

3. RETURN from a SUBROUTINE subprogram is to the

next executable statement in the calling
program which would logically follow the CALL
statement.

4. Upon return from a FUNCTION subprogram the
single-valued result of the subprogram is
available to the evaluation of the expression
from which the FUNCTION call was made.

MICROSOFT 8883 FORTRAN-IV Page 89

9.11

5. Upon return from a SUBROUTINE subprogram the

values assigned to the arguments 1in ;he
SUBROUTINE are available for use by the calling
progranm,

Example:

Calling Program Unit

CALL SUBR(Z9,B7,R1)

Called Program Unit

SUBROUTINE SUBR(A,B,C)
READ(3,7) B
A = B**C
RETURN
7 FORMAT (F9.2)
END

In this example, Z9 and B7 are made available to
the calling program when the RETURN occurs.

PROCESSING ARRAYS IN SUBPROGRAMS

If a calling program passes an array name to a
subprogram, the subprogram must contain the
dimension information pertinent to the array. A
subprogram must contain array declarators if any of
its dummy arguments represent arrays or array
elements.

For example, a FUNCTION subprogram designed to
compute the average of the elements of any one
dimension array might be the folowing:

Calling Program Unit

DIMENSION Z1(50),22(25)

oo
—
]

AVG(21,50)

MICROSOFT 8880 FORTRAN-IV Page 90

A2 = Al-AVG(Z22,25)

Called Program Unit

FUNCTION AVG (ARG, I)
DIMENSION ARG (50)
SUM = 8.9
DO 28 J=1,1

20 SUM = SUM + ARG(J)
AVG = SUM/FLOAT(I)
RETURN
END

Note that actual arrays to be processed by the
FUNCTION subprogram are dimensioned in the calling
program and the array names and their actual
dimensions are transmitted to the FUNCTION
subprogram by the FUNCTION subprogram reference.
The FUNCTION subprogram itself contains a dummy
array and specifies an array declarator.

Dimensioning information may also be passed to the
subprogram in the paramater list. For example:

Calling Program Unit
DIMENSION A(3,4,5)
CALL SUBR(A,3,4,5)
END

Called Program Unit

SUBROUTINE SUBR(X,I,J,K)
-DIMENSION X(I,J,K)

RETURN
END

It is valid to use variable dimensions only when
the array name and all of the variable dimensions
are dummy arguments. The variable dimensions must
be type Integer. It is 1invalid to change the
values of any of the variable dimensions within the
called program.

FamaN

MICROSOFT 80888 FORTRAN-IV Page 91

9.12

BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram has as its only purpose the
initialization of data in a COMMON block during
loading of a FORTRAN object program. BLOCK DATA
subprograms begin with a BLOCK DATA statement of
the following form:

BLOCK DATA ([subprogram-name]

and end with an END statement. Such subprograms
may contain only Type, EQUIVALENCE, DATA, COMMON
and DIMENSION statements and are subject to the
following considerations:

1. If any element in a COMMON block 1is to be
initialized, all elements of the block must be
listed in the COMMON statement even though they
might not all be initialized.

2. Initialization of data in more than one COMMON
block may be accomplished in one BLOCK DATA
subprogram.

3. There may be more than one BLOCK DATA
subprogram loaded at any given time.

4. Any particular COMMON block item should only be
initialized by one program unit.

Example:

BLOCK DATA

LOGICAL Al
COMMON/BETA/B(3,3)/GAM/C (4)
COMMON/ALPHA/Al,C,E,D

DATA B/1.1,2.5,3.8,3*%4.96,
12*¢.52,1.1/,C/1.2E0,3*4.08/
DATA Al/.TRUE/,E/=~5.6/

MICROSOFT 3082 FORTRAN-IV Page 92

APPENDIX A

Language Extensions and Restrictions

The FORTRAN-80 language includes the following extensions to
ANSI Standard FORTRAN (X3.9-1966).

1.

9.

If ¢ is used in a 'STOP c¢' or ‘PAUSE c¢' statement,
¢ may be any 'six ASCII characters.

Error and End-of-File branches may be specified 1in
READ and WRITE statements using the ERR= and END=
options.

The standard subvrograms PEEK, POXE, INP, and OUT
have been added to the FORTRAN library.

Statement functions may use subscripted variables.

Hexadecimal constants mav be used wherever Integer
constants are normally allowed.

The literal form of Hollerith data (character
string between apostrophe characters) is permitted
in place of the standard nH form.

Holleriths and Literals are allowed in expressions
in place of Integer constants. ~

There 1is no restriction to the number of
continuation lines.

Mixed mode expressions and assignments are allowed,
and conversions are done automatically.

FORTRAN-80 places the following restrictions wupon Standard

FORTRAN.

1.

2.

The COMPLEX data type is not implemented. It may
be included in a future release.

The specification statements must appear in the
following order:

T. TROGT2M, CIMROOTINE, PIMCTTION, RTIACK DA™A

2. lvpe. EQATZRNAL, DIMENZITHN

3. COMMOKN

MICROSOFT 8888 FORTRAN-IV Page 93

4, EQUIVALENCE
5. DATA

6. Statement Functions

3. A different amount of computer memory is allocated
for each of the data types: Integer, Real, Double
Precision, Logical.

4. The equal sign of a replacement statement and the
first comma of a DO statement must appear on the
initial statement line.

Descriptions of these language extensions and restrictions
are included at the appropriate points in the text of this
document.

MICROSOFT 8084 FORTRAN-IV Page 94
APPENDIX B

I/0 Interface

Input/Output operations are table-dispatched to the
driver routine for the proper Logical Unit Number. S$SLUNTB
is the dispatch table. It contains one 2-byte driver
acddress for each possible LUN. It also has a one-byte entry
at the beginning, which contains the maximum LUN plus one.
The initial run-time package provides for 19 LUN's (1 - 10),
all of whicn correspond to the TTY. Any of these mwmay be
redefined by the user, or more added, simply by changing the
appropriate entries in SLUNTB and adding more drivers. The
runtime system wuses LUN 3 for errors and other wuser
communication. Therefore, LUN 3 should correspond to the
operator console. The initial structure of SLUNTB is shown
in the listings following this appendix.

The device drivers also contain local dispatch tables.
Note that SLUNT3 contains one address for each device, vet
there are really seven possible operations per device:

l]) Formatted Read
2) Formatted Write
3) Binary Read
4) Binary Write
5) Rewind
6) Backspace
7) Endfile
Each device driver contains up to seven routines. The

starting addresses of each of these seven routines are
placed at the beginning of the driver, in the exact order
listed above. The entry in SLUNTB then points to this local
table, and the runtime system indexes into it to get the
address of the appropriate routine to handle the requested
I/0 operation.

The following conventions apply to the individual 1I/0
routines:
1. Location $BF contains the data buffer address for

READs and WRITEs.

2. For a WRITE, the number of bytes to write 1is in
location S$BL.

3. For a READ, the number of bytes read should be
returned in S$BL.

MICROSOFT 8080 FCRTRAN-IV Page 95

4.

All I/0 operations set the condition codes before
exit to 1indicate an error condition, end-of-file
condition, or normal return: ‘

a) Cy=1, Z=don't care - 1I/0 error
b) CY=0, Z=0 - end-of-file encountered
c) CY¥=8, Z=1 - normal return

The runtime system checks the condition codes after
calling tne driver. If they indicate a non-normal
condition, control is passed to the label specified
by "ERR=" or "END=" or, if no label is specified, a
fatal error results.

SIOERR is a global routine which prints an "ILLEGAL
I/0 OPERATION" message (non-fatal). This routine
may be wused if there are some operations not
allowed on a varticular device (i.e. Binary I/0 on
a TTY).

NOTE

The I/0 buffer has a fixed maximum 1length
of 132 bytes unless it 1is changed at
installation time. If a driver allows an
input operation to write past the end of
the buffer, essential runtime variables may
be affected. The conseguences are
unpredictable.

The listings following this appendix contain an example

driver

for a TTY. REWIND, BACKSPACE, and ENDFILE are

implemented as No-Ops and Binary I/0 as an error. This 1is
the TTY driver provided with the runtime package.

20

SIotmaeue®
SO
DNINININNINO b
W oo~ oM

MAC89 1.9

2@@&@@&&
JhesTuastosTusTas s ue]
D@D i
mpimaeNw

0023
@D

80
8a17
0o

0031

PAGE

N e = = = O EIRE RS
SARXRVOD

By s P e Ve [US TON VI US I US I U LUNIUNIUN] (0 1)0 1 01 0 1 S]]
U1 W =ED0 00 ~ 1V UTE LN O 00 ~J VUL LN IO 0 ~ IOV W N H SO O ~ I N B Lo

[}
=
[=A)
ARSI OLLSAEEHERASNOISRODNEE N

= SSS&&GS&&&&&&&OSG&&&G&S&S&G&S&&&G&&&&&@GSSD&@
e o

~1J

[SIS SIS TSI S LS TS IS S TOT S IS LS WS S Lo TS TusTas T T s T oV Tes T T [Tas Tus Ty s Tus Fas TR Tavias BSOS Tus Bas Tus fae S TS TS |

048

~e

TRECER
SDRV3:

DRV3EN:

DRV3RE
DRV3BA

DRV3BW:
DRV3BR

TTY I/0 DRIVER
SIOERR $BL, SBF, SERR, STTYIN , STTYOT

EXT
EQU
ENTRY
DW
DW
DW
DW
DW
DW
DW
XRA

B0
EQU

DRV3FR: XRA

DRV3l:

DRV3FW:

$DRV3

DRV3FR
DRV 3FW
DRV3BR
DRV3BW
DRV3RE
DRV33A
gRVBEN

DRV3EN
DRV3EN

SIOERR
DRV3BW
A

BL

TTYIN
0177

'INPU“ RECORD TOO 1ONG

;FORMATTED READ

s FORMATTED WRITE
;BINARY READ

sBINARY WRITE

;REWIND

:BACKSPACE

,EVDFILE

;THESE OPERATIONS ARE
'NO—OPS FOR TTY

;ILLEGAL OPERATIONS
; (PRINT ERROR AND RETURN)

;READ

;ZERO BUFFER LENGTH
;INPUT A CHAR

;AND OFF PARITY
;IGNORE LINE FEEDS

;SAVE IT
;GET CHAR POSIT IN BUFFER
;ONLY 1 BYTE

;GET BUFFER ADDR
;ADD OFFSET

,uET CHAR

;PUT IT IN BUFFER
; INCREMENT SBL

4AX IS DECIMAL 128
'GET NEXT CHAR

; INPUT RECORD TOO LONG
;CLEAR FLAGS

;BUFFER LENGTH

>
(]

[S21 216102102

1>
?;\D ~Ie oM

R R Bt At RS [eaTeplerte)TepTor vl ig]

CWF ONR TP OO T

~J

LERAHINSOREVOODRSTOOE[DONET QRS

WO ~I~I~]
~l&swnommg

e

)

SIOERR
STTYIN
DRV3FR
DRV3RE
DR3FW2

MACE0 1.0

c8
2A 0229 *

CD 9077 *

C3 gg7B '

MAC80 1.0

ga11l* $BL

0018* STTYOT
0813' DRV3FW
00PE' DRV3BA
0079' DR3FW1

2
2

QOO ~I~1~]~1~1~I~ I~]~ I~ IO NN OYOWIHNTUUIWUNUILA UL
N TEAO 0O ~ IOV ULE LW NI END 00 ~ ST W N &WWO CO -~ IR ULR LI =T\

SRAORERANOORGAESDEHQARESRGCLE AR

DR3FWl: ¥

DR3FW2:
DRV32:

$BF

DRV3BR
DRV3EN
DRV32

SBF

A

ESW
a,13
STTYOT
B

P%?FWZ
DR3FW1

ERR
DRV3
DRV3BW

DRV31

sEMPTY BUFFER

:BUFFER ADDRESS
¢DECREMENT LENGTH

1SAVE IT

;CR

;OUTPUT IT

:GET FIRST CHAR TN BUFFER

;NO LINE FEEDS

;NOT FORYM FEED
; FORM FEED
;OUTPUT IT

;LF

;GET CHAR BACK

;NO MORE LINE FEEDS
ZNO MORE LINE FEEDS

!

;GET LENGTH BACK
s INCREMENT PTR

;SAVE CHAR COUNT
;GET NEXT CiAR

s INCREMENT PIR
;OUTPUT CHAR
:GET COUNT
;DECREMENT IT
;ONE MORE TIME

@a3D*
0RO’
0910
go17'

[yl Tunl
o
"maEw
[y

ATV RN
Qoo osuo
LyEDmGeaeEE Qe
WO~I~JUigTwwlwn WHELIE

fus LSl]
QD
[SNTORRuN]
[e¥ANelVe]

MAC88 1.0 PAGE 1

06190 ;COMMENT *
60209 ; DRIVER ADDRESSES FOR LUN'S 1 THROUGH 10
00220 LpT ECU 1 ;UNIT 2 IS LPT
26230 D3K EQU 1 1UNITS 6-19 ARE DSK
09235 DIC BQU 0 ;DTC COMMUNICATIONS UJIT 4
00240
@039
00420 ENTRY SLUNTB
62560 EXT $DRV3
93 00600 SLUNTB: DB 013 SMAX LUK + 1
QU009 * 00700 DA SDRV3 ;THEY ALL POINT TO SDRV3 FOR KOW
00800 IFF LPT
20920 D SPRV3
01260 ENDIF
21160 IFT LPT
31200 EXT LPTDRV
0e0o * 21300 W LPTDRV
31400 ENDIF
ROOL * 01560 DW $DRV3
01518 IFF DIC
005 * 01500 DW $DRV3
01602 ENDIF
01604 IFT DTC
01605 EXT MDRV
01606 DW CMDRV
21608 ENDIF
0097 * g1700 DW $DRV3
01800 IFF DSK
02000 D SRV
y D
02100 DW DRV3 7N
02200 DW DRV3
02300 DW DRV3
02400 ENDIF
32500 IFT DSK
02600 EXT DSKDRV
a00g * 02700 DW DSKDRV
00QB * 02800 DW DSKDRV
200D * 02500 DA DSKDRY
Q0OF * 03060 DW DSKDRV
0011 * 03100 DW DSKDRV
03200 ENDIF
03300 END
MAC8Z 1.0 PAGE 2
@001 DSK 9001 DIC 000@ SLUNTB 0009
00@9* LFTDRV 0903* DSKDRV @013*

MICROSOFT 8088 FORTRAN-IV Page 96

APPENDIX C

Subprogram Linkages

This appendix defines a normal suborogram call as
generated by the FORTRAN compiler. It 1is included to
facilitate linkages between FORTRAN programs and those
written in other languages, such as 8388 Assembly.

A subprogram reference with no parameters generates a

simple "CALL" instruction. The corresponding subprogram
should return via a simple "RET." (CALL and RET are 8330
opcodes - see the assembly manual or 8080 reference manual

for explanations.)

A subprogram reference with parameters results in a

somewhat more complex calling sequence. Parameters are
always passed by reference (i.e., the thing passed 1is
actually the address of the low byte of the actual
argument) . Therefore, parameters always occupy two Dbytes

each, regardless of type.

The method of passing the parameters depends upon the
number of parameters to pass:

1. If the number of parameters is less than or eaual
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present), and 3 in BC
(if present).

2. If the number of parameters is greater than 3, they
are passed as follows:

1. Parameter 1 in HL.
2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3).

Note that, with this scheme, the subprogram must know
how many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. Neither the compiler nor
the runtime system checks for the correct number of

MICROSOFT 8486 FORTRAN-IV Page 97

parameters.

If the subprogram expects more than 3 varameters, and
neeas to transfer them to a local data areca, there iz a
system subroutine which will verform this transfer. This
argument transfcr routine 1is named 35AT, and is called with
HL pointing to the local data area, BC pointing to the third

paramcter, and A containing the number of araguments to
transtfer (i.e., the total number of arguments minus 2). The
subprcgran is respongible for saving the first two

parameters before calling SAT. For example, if a subprogram
expects 5 parameters, ‘it should look like:

SUBR: SHLD P1 ; SAVE PARAMETER 1
XCHG
SHLD P2 i SAVE PARAMETER 2
MVI A,3 iNO. OF PARAMETERS LEFT
LXT H,P3 s POINTER TO LOCAL AREA
CALL SAT ;TRANSFER THE OTHER 3 PARAMETERS

[Body of subprogram]

RET s RETURN TO CALLER
Pl: DS 2 ;SPACE FOR PARAMETER 1
pP2: DS 2 ;SPACE FOR PARAMETER 2
pP3: DS 6 ; SPACE FOR PARAMETERS 3-5

When accessing parameters in a subprogram, don't forget
that they are pointers to the actual arguments passed.

NOTE

It 1is entirely up to the
programmer to see to it that
the arguments in the «calling
program match in number, type,
and length with the parameters
expected by the subprogram.
This applies to FORTRAN

su?programs, as well as those
written in assembly language.

- FORTRAN Functions (Section 9) return
registers or memory depending upon the
results are returned in (A), 1Integers

their values in

: type. Logical
in (HL), Reals 1in

MICROSOFT 8884 FORTRAN-1IV ' Page 98

memory at $AC, Double Precision in memory at $DAC. S$SAC and
$DAC are the addresses of the low bytes of the mantissas.

MICROSOFT 8080 FORTRAN-IV ’ pPage 99

APPENDIX D

ASCII CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR
pac NUL 243 + 486 \Y
gol SOH 244 087 W
062 STX g45 - 083 X
263 ETX 246 . 289 Y
004 EOT 047 / Y yA
@285 ENQ 248 1} 391 [
o6 ACK g49 1 392 \
o7 BEL 350 2 po3]
008 BS 851 3 994 - {or 1)
009 HT 952 4 #95 < (or «)
010 LF P53 5 896 !
011 vT 254 6 897 a
212 FF 855 7 998 b
713 CR B56 8 @99 c
d14 SO g57 9 100 d
$15 SI 058 : 101 e
B16 DLE 359 : 102 f
017 DC1 060 < 103 g
218 DC?2 861 = 104 h
P19 DC3 062 > 105 i
029 DC4 263 ? 106 j
P21 NAK 264 @ 107 k
022 SYN @65 A 108 1
23 ETB B66 B 189 m
P24 CAN a67 C 110 n
@25 EM P68 D 111 o
026 SUB 969 E 112 P
027 ESCAPE 070 F 113 q
028 FS 271 G 114 r
229 GS 872 H 115 s
030 RS 073 I lle6 t
231 Us D74 J 117 u
032 SPACE 875 K 118 v
233 ! 276 L 119 W
P34 " 877 M 120 X
235 # 278 N 121 y
036 S 879 0 122 z
237) 80 P 123 {
0386 & 381 Q 124 |
239 ' 082 R 125 }
040 (283 S 126 ~
041) A84 T 127 DEL
042 * f85 U

LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

MICROSOFT 8088 FORTRAN-IV Page 1080
APPENDIX E

DISK FILE ACCESS

FORTRAN-30 provides the cavabilityv of disk file access

via FORTRAN programs, Logical ©Unit Numbers 6-18 are
preassigned to disk files. A READ or WRITE to an LUN
automatically OPENSs the file for input or output

respectively, if it is not already open. The file remains
open until closed by an ENDFILE command or until normal
program termination. A file that is OPENed by a READ or
WRITE statement has a default name that depends upon the
operating system:

CPM and
ISIS I1: FORT06.DAT, FORT27.DAT,..., FORTl@.DAT

ALTAIR: FORO6DAT, FORP7DAT,..., FOR10DAT
DTC: FORO6D, FORO7D,..., FOR1OD

In each case the LUN is incorporated into the default file
name.

Alternatively, a file may be OPENed wusing the OPEU
subroutine. LUNs 1-5 may also be assigned to disk files
with OPEN. The form of an OPEN call is:

CALL OPEN (LUN, Filename, Drive)
where:
LUN = a Logical Unit Number to be associated with the

file (must be an integer, constant or variable with a value
between 1 and 10).

Filename = an ASCII name which the operating system
will associate with the file. The Filename should be a
Hollerith or Literal constant, or a variable or array name,
where the wvariable or array contains the ASCII name. The
Filename should be blank filled to exactly the number of
characters allowed by the operating system:

CEM: 11 characters
ALTAIR: 8 characters

DTC: 6 characters

ISIS II: 6 characters followed by a "." followed by
a 3-character extension

MICROSOFT 8883 FORTRAN-IV Page 141

Drive = the number of the disk drive on which the file
exists or will exist (must be an integer, constant or
variable within the range allowed by the operating system).
If the Drive specified is 0, the currently selected drive is
assumed; 1 is drive 0 (or A), 2 is drive 1 (or B), etc.

The OPEN subroutine allows the program to specify a
filename and device to be associated with an LUN, whereas
the default specifies a default name and uses the currently
selected disk drive.

An OPEN of a non-existent file creates a null file of
the appropriate name. An OPEN of an existing file followed
by an output deletes the existing file. An OPEN of an
existing file followed by an input allows access to the
current contents of the file.

The ENDFILE and REWIND commands allow further program
control of disk files. The form of the commands is:

ENDFILE L or REWIND L

where L is an LUN. ENDFILE L <closes the file associated
with LUN L., REWIND L closes the file associasted with LUN L,
then opens it again.

NOTE

Exercise caution when
outputting to disk files. If
output is done to an existing
file, the existing file will
be deleted and replaced with a
new file of the same name.

MICROSOFT 8#88 FORTRAN-1IV

Aritnmetic LCxpression
Arithmetic IF
Arithmetic Operators .

ALTAY ¢ o o o« o o s e .

Declaratcr
Array Element

ASCII Character Codes .
ASSIGH « « o o o o o o
Assigned GOTO

Array

BACKSPACE . « « « « + &
BLOCK DATA . . . + « «

CALL . . v o« o o o o o =
Character Set
Characteristic
COMMON ¢ ¢ ¢ o o o o o

Computed GOTO
Constant . . « « « o o« &
Continuation . «
CONTINUE . o« « o « o o«
Control Statements . .

DATA . . .« ¢ « o o o o
Data Representation . .
Data Storage . . .« .« . .
Decode . « + « « « « o &
DIMENSION e e e e s e e
Disk v « ¢« « « o « o o
DO v ¢ ¢ o ¢ o o o o o @
DO Implied List
Double precision
Dumnmy« + ¢ ¢ ¢ o .

Encode . .« +« « o o o o @
END . ¢ ¢ ¢ o o o o o =«
ENDFILE e e+ & e e e e
Endfile « « . .
EQUIVALENCE . « . .« . &
Executable
Expression
Extended Range
EXTERNAL « . . .
External Functions . . .

FORMAT
Formatted READ
Formatted WRITE . e

Page 102

INDEX
. 23-24, 45
. . 42, 45, 47
. . /
. . 12, 18, 32-33, 35-36, 38-39,
54, 75, 34-85, §9-97
. . 18
. 12, 18, 25, 30, 37
. 99
. . 42, 44
. . 42-43
. 57
. . 32, 35, 86, 91
. . 42, 51, 87
. .6
.o.o21
. . 32, 35-36, 38-39, 84, 86,
91
. 42-43
. . 12-13
. . 8-9
42, 49
.. 42
. . 32, 39, 84, 86, 91
.. 12
. .19
. 57
. . 18, 32, 35, 91
. . 100
. . 42, 45-47
. . 59
.. 12
. . 86-87, 89-90
. . 57
. . 51, 84, 87, 91
. . 57
. . 100
. . 32, 36-39, 84, 86, 91
. . 11, 32, 42
. . 23, 29-30
. . 48
. . 32, 34, 85, 88
. . 82
. 53-55, 61, 65-66, 68-76
. . 52

55

FUNCTION . . .
GOTO

Hexadecimal
Hollerith .

1/0

I/0 List .
8
Index

IND « e e
Integer . . .

Intrinsic Functions

Label

Library Function .

Line Format
Literal . . .
Logical

Logical Expression

Logical IF . .
Logical Operator

Logical Unit Number

LUN e e e e e
Mantissa

Nested
Non-execbtable

Open
Operand . .
Operator
oLT

PAUSE
PEEK
POKE
PROGRAM

Range
READ« .
Real

Relational Expression
Relational Operator
Replacement Statement

RETURN
REWIND
Rewind

scale Factor . .

Specification Statement
Statement Function

sTOl |, .
Sto-
Sto:

Format .

-

32, 35, 77, 83-88, 90
42, 47

19, 29, 4n

8, 13, 18-1%, 29, 44, 54,
66, 68, 85

52, 94

58

42, 45

80

12, 17, 21

81

8, 10, 42-43, 46

77, 79

8

8, 18-19, 29, 40, 68, 85
12, 17, 21, 69

25, 28, 45

42, 45, 47

26

52, 56, 94

52, 56, 94

21

49

11, 32

100

23

23

80

42, 47, 50

80

83

32, 78, 86

47

54, 56, 61, 70, 73-76
12, 17, 21

25-26

26

38, 46

42, 47, 51, 84, 86, 88-89
57

121

70

32

32, 77-78

42, 47, 50

33

